Previous |  Up |  Next


Title: On the normality of an almost contact $3$-structure on $QR$-submanifolds (English)
Author: Funabashi, S.
Author: Pak, J. S.
Author: Shin, Y. J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 571-589
Summary lang: English
Category: math
Summary: We study $n$-dimensional $QR$-submanifolds of $QR$-dimension $(p-1)$ immersed in a quaternionic space form $QP^{(n+p)/4}(c)$, $c\geqq 0$, and, in particular, determine such submanifolds with the induced normal almost contact $3$-structure. (English)
Keyword: quaternionic projective space
Keyword: quaternionic number space
Keyword: $QR$-submanifold
Keyword: normal almost contact $3$-structure
MSC: 53C40
MSC: 53D15
idZBL: Zbl 1080.53050
idMR: MR2000054
Date available: 2009-09-24T11:04:36Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] M.  Barros, B. Y.  Chen and F.  Urbano: Quaternion $CR$-submanifolds of a quaternion manifold.Kodai Math.  J. 4 (1981), 399–418. MR 0641361
Reference: [2] A.  Bejancu: Geometry of $CR$-submanifolds.D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986. Zbl 0605.53001, MR 0861408
Reference: [3] B. Y.  Chen: Geometry of Submanifolds.Marcel Dekker Inc., New York, 1973. Zbl 0262.53036, MR 0353212
Reference: [4] J.  Erbacher: Reduction of the codimension of anisometric immersion.J.  Differential Geom. 5 (1971), 333–340. MR 0288701, 10.4310/jdg/1214429997
Reference: [5] S.  Ishihara: Quaternion Kaehlerian manifolds.J.  Differential Geom. 9 (1974), 483–500. Zbl 0297.53014, MR 0348687, 10.4310/jdg/1214432544
Reference: [6] S.  Ishihara and M.  Konishi: Differential geometry of fibred spaces.Publication of the Study Group of Geometry, Vol.  8, Institute of Mathematics, Yoshida College, Tokyo, 1973. MR 0405275
Reference: [7] D.  Krupka: The trace decomposition problem.Beiträge Algebra Geom.; Contrib. Alg. Geom. 36 (1995), 303–315. Zbl 0839.15024, MR 1358429
Reference: [8] Y. Y.  Kuo: On almost contact $3$-structure.Tohoku Math.  J. 22 (1970), 235–332. Zbl 0205.25801, MR 0278225
Reference: [9] J.-H.  Kwon and J. S.  Pak: $QR$-submanifolds of $(p-1)$ $QR$-dimension in a quaternionic projective space $QP^{(n+p)/4}$.Acta Math. Hungar. 86 (2000), 89–116. MR 1728592, 10.1023/A:1006795518714
Reference: [10] J.-H.  Kwon and J. S.  Pak: Scalar curvature of $QR$-submanifolds immersed in a quaternionic projective space.Saitama Math.  J 17 (1999), 47–57. MR 1740246
Reference: [11] J.-H.  Kwon and J. S.  Pak: On $n$-dimensional $QR$-submanifolds of $(p-1)$ $QR$-dimension in a quaternionic space form.Preprint.
Reference: [12] M.  Okumura and L.  Vanhecke: A class of normal almost contact $CR$-submanifolds in  $C^q$.Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 359–369. MR 1345606
Reference: [13] J. S.  Pak: Real hypersurfaces in quaternionic Kaehlerian manifolds with constant $Q$-sectional curvature.Kodai Math. Sem. Rep. 29 (1977), 22–61. Zbl 0424.53012, MR 0461384, 10.2996/kmj/1138833571
Reference: [14] K.  Yano, S.  Ishihara and M.  Konishi: Normality of almost contact $3$-structure.Tohoku Math.  J. 25 (1973), 167–175. MR 0336644, 10.2748/tmj/1178241375


Files Size Format View
CzechMathJ_53-2003-3_7.pdf 389.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo