Previous |  Up |  Next


Title: Structure of partially ordered cyclic semigroups (English)
Author: Drewniak, Jósef
Author: Sobera, Jolanta
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 777-791
Summary lang: English
Category: math
Summary: This paper recalls some properties of a cyclic semigroup and examines cyclic subsemigroups in a finite ordered semigroup. We prove that a partially ordered cyclic semigroup has a spiral structure which leads to a separation of three classes of such semigroups. The cardinality of the order relation is also estimated. Some results concern semigroups with a lattice order. (English)
Keyword: cyclic semigroup
Keyword: ordered semigroup
Keyword: lattice order
Keyword: idempotent element
Keyword: subidempotent
Keyword: superidempotent elements
MSC: 06F05
MSC: 20M10
MSC: 20M30
idZBL: Zbl 1080.06019
idMR: MR2018830
Date available: 2009-09-24T11:06:35Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] G.  Birkhoff: Lattice Theory.AMS Coll. Publ. 25, Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] E. Czogala and J.  Drewniak: Associative monotonic operations in fuzzy set theory.Fuzzy Sets Syst. 12 (1984), 249–269. MR 0740097
Reference: [3] L.  Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [4] J. M.  Howie: An Introduction to Semigroup Theory.Acad. Press, London, 1976. Zbl 0355.20056, MR 0466355
Reference: [5] J.-X.  Li: Periodicity of powers of fuzzy matrices (finite fuzzy relations).Fuzzy Sets Syst. 48 (1992), 365–369. Zbl 0760.15012, MR 1178176
Reference: [6] L.  Redei: Algebra.Pergamon Press, Oxford, 1967. Zbl 0191.00502, MR 0211820
Reference: [7] Š.  Schwarz: On the semigroup of binary relations on a finite set.Czechoslovak Math.  J. 20 (1970), 632–679. Zbl 0228.20034, MR 0296190
Reference: [8] Š.  Schwarz: On idempotent relations on a finite set.Czechoslovak Math.  J. 20 (1970), 696–714. MR 0268047
Reference: [9] M. G.  Thomasom: Convergence of powers of a fuzzy matrix.J.  Math. Anal. Appl. 57 (1977), 476–480. MR 0427342, 10.1016/0022-247X(77)90274-8
Reference: [10] M.  Yoeli: A note on a generalization of Boolean matrix theory.Amer. Math. Monthly 68 (1961), 552–557. Zbl 0115.02103, MR 0126472, 10.2307/2311149


Files Size Format View
CzechMathJ_53-2003-4_2.pdf 355.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo