Full entry |
PDF
(0.3 MB)
Feedback

resolving set; basis; dimension; connected resolving set; connected resolving number

References:

[1] P. Buczkowski, G. Chartrand, C. Poisson and P. Zhang: **On $k$-dimensional graphs and their bases**. Period. Math. Hungar. 46 (2003), 25–36. DOI 10.1023/A:1025745406160 | MR 1975342

[2] G. Chartrand, L. Eroh, M. Johnson and O. Oellermann: **Resolvability in graphs and the metric dimension of a graph**. Discrete Appl. Math. 105 (2000), 99–113. DOI 10.1016/S0166-218X(00)00198-0 | MR 1780464

[3] G. Chartrand and L. Lesniak: **Graphs $\&$ Digraphs. Third edition**. Chapman $\&$ Hall, New York, 1996. MR 1408678

[4] G. Chartrand, C. Poisson and P. Zhang: **Resolvability and the upper dimension of graphs**. Inter. J. Comput. Math. Appl. 39 (2000), 19–28. MR 1763834

[5] G. Chartrand, M. Raines and P. Zhang: **The directed distance dimension of oriented graphs**. Math. Bohem. 125 (2000), 155–168. MR 1768804

[6] M. R. Garey and D. S. Johnson: **Computers and Intractability: A Guide to the Theory of NP-Completeness**. Freeman, New York, 1979. MR 0519066

[7] F. Harary and R. A. Melter: **On the metric dimension of a graph**. Ars Combin. 2 (1976), 191–195. MR 0457289

[8] M. A. Johnson: **Browsable structure-activity datasets**. Submitted.

[10] P. J. Slater: **Dominating and reference sets in graphs**. J. Math. Phys. Sci. 22 (1988), 445–455. MR 0966610