Previous |  Up |  Next


Title: Prüfer rings with involution (English)
Author: Idris, Ismail M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 881-890
Summary lang: English
Category: math
Summary: The concept of a Prüfer ring is studied in the case of rings with involution such that it coincides with the corresponding notion in the case of commutative rings. (English)
Keyword: Prüfer domains
Keyword: localization
Keyword: noncommutative Prüfer rings
Keyword: involution
MSC: 13F05
MSC: 16H05
MSC: 16U20
MSC: 16U30
MSC: 16W10
idZBL: Zbl 1080.16509
idMR: MR2018836
Date available: 2009-09-24T11:07:22Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] R. Wiegandt: On the structure of involution rings with chain conditions.Vietnam J.  Math. 21 (1993), 1–12. MR 1367460
Reference: [2] N. I.  Dubrovin: Noncommutative Prüfer rings.Math. USSR Sbornik 74 (1993), 1–8. MR 1133567, 10.1070/SM1993v074n01ABEH003330
Reference: [3] M.  Domokos: Goldie’s theorems for involution rings.Comm. Algebra 22 (1994), 371–380. Zbl 0810.16034, MR 1255872, 10.1080/00927879408824854
Reference: [4] I. M.  Idris: Rings with involution and orderings.J.  Egyptian Math. Soc. 7 (1999), 167–176. Zbl 0947.16022, MR 1722062
Reference: [5] M. D.  Larsen and P. Mc.  Carthy: Multiplicative Theory of Ideals.Academic Press, New York-London, 1971. MR 0414528
Reference: [6] I. M.  Idris: Prüfer rings in *-division rings.Arabian J.  Sci. Engrg. 25 (2000), 165–171. MR 1829227
Reference: [7] A. W.  Goldie: The structure of Noetherian rings.Lecture Notes in Math., Vol.  246, Springer-Verlag, 1972, pp. 214–321. Zbl 0237.16004, MR 0393118


Files Size Format View
CzechMathJ_53-2003-4_8.pdf 295.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo