Previous |  Up |  Next


Title: The inertia set of nonnegative symmetric sign pattern with zero diagonal (English)
Author: Gao, Yubin
Author: Shao, Yanling
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 925-934
Summary lang: English
Category: math
Summary: The inertia set of a symmetric sign pattern $A$ is the set $i(A)=\lbrace i(B) \mid B=B^T \in Q(A)\rbrace $, where $i(B)$ denotes the inertia of real symmetric matrix $B$, and $Q(A)$ denotes the sign pattern class of $A$. In this paper, a complete characterization on the inertia set of the nonnegative symmetric sign pattern $A$ in which each diagonal entry is zero and all off-diagonal entries are positive is obtained. Further, we also consider the bound for the numbers of nonzero entries in the nonnegative symmetric sign patterns $A$ with zero diagonal that require unique inertia. (English)
Keyword: sign pattern
Keyword: inertia
Keyword: inertia set
Keyword: unique inertia
MSC: 15A18
idZBL: Zbl 1080.15501
idMR: MR2018840
Date available: 2009-09-24T11:07:54Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] B. N. Datta: Stability and inertia.Linear Algebra Appl. 302–303 (1999), 563–600. Zbl 0972.15009, MR 1733550
Reference: [2] J. H. Drew, C. R. Johnson, D. D. Olesky and P.  van den Driessche: Spectrally arbitrary patterns.Linear Algebra Appl. 308 (2000), 121–137. MR 1751135
Reference: [3] R. A. Horn and C. R. Johnson: Matrix Analysis.Cambridge University Press, Cambridge, 1985. MR 0832183
Reference: [4] R. A. Brualdi and B. L. Shader: Matrices of Sign-solvable Linear System.Cambridge University Press, Cambridge, 1995. MR 1358133


Files Size Format View
CzechMathJ_53-2003-4_12.pdf 319.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo