Previous |  Up |  Next


Title: Torsions of connections on higher order cotangent bundles (English)
Author: Doupovec, Miroslav
Author: Kurek, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 949-962
Summary lang: English
Category: math
Summary: By a torsion of a general connection $\Gamma $ on a fibered manifold $Y\rightarrow M$ we understand the Frölicher-Nijenhuis bracket of $\Gamma $ and some canonical tangent valued one-form (affinor) on $Y$. Using all natural affinors on higher order cotangent bundles, we determine all torsions of general connections on such bundles. We present the geometrical interpretation and study some properties of the torsions. (English)
Keyword: affinor
Keyword: general connection
Keyword: torsion
MSC: 53C05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1080.53020
idMR: MR2018842
Date available: 2009-09-24T11:08:09Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] M. Doupovec and J.  Kurek: Some geometrical constructions with $(0,2)$-tensor fields on higher order cotangent bundles.Annales UMCS 50 (1996), 43–50. MR 1472576
Reference: [2] I. Kolář and M.  Modugno: Torsions of connections on some natural bundles.Diff. Geom. Appl. 2 (1992), 1–16. MR 1244453, 10.1016/0926-2245(92)90006-9
Reference: [3] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [4] J. Kurek: Natural affinors on higher order cotangent bundle.Arch. Math. (Brno) 28 (1992), 175–180. Zbl 0782.58007, MR 1222284
Reference: [5] J. Kurek: Natural transformations of higher order cotangent bundle functors.Ann. Polon. Math. 58 (1993), 29–35. Zbl 0778.58003, MR 1215758, 10.4064/ap-58-1-29-35
Reference: [6] M. Kureš: Torsions of connections on tangent bundles of higher order.Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie  II 54 (1998), 65–73. MR 1662727
Reference: [7] L. Mangiarotti and M. Modugno: Fibered spaces, jet spaces and connections for field theories.Proc. of Internat. Meet. Geometry and Physics, Florence  1982, Pitagora Editrice, Bologna, 1983, pp. 135–165. MR 0760841
Reference: [8] L. Mangiarotti and M. Modugno: Connections and differential calculus on fibred manifolds. Applications to field theory.Florence Univ., Dept. of Appl. Math. (1989), Preprint.
Reference: [10] A. J. A. Morgan: Higher order tensors.SIAM J.  Appl. Math. 30 (1976), 355–380. Zbl 0322.53019, MR 0394482, 10.1137/0130035
Reference: [9] W. M. Mikulski: The natural affinors on generalized hogher order tangent bundles.Rend. Mat. Appl. 21 (2001), 339–349. MR 1884952


Files Size Format View
CzechMathJ_53-2003-4_14.pdf 371.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo