[1] R. P. Agarwal, S. R.  Grace and D.  O’Regan: 
Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, , 2000. 
MR 1774732[2] R. P.  Agarwal, S. R.  Grace and D.  O’Regan: 
Oscillation criteria for certain $n$th  order differential equations with deviating arguments. J.  Math. Anal. Appl. 262 (2001), 601–622. 
DOI 10.1006/jmaa.2001.7571 | 
MR 1859327[4] M. P.  Chen, J. S.  Yu and Z. C.  Wang: 
Nonoscillatory solutions of neutral delay differential equations. Bull. Austral. Math. Soc. 48 (1993), 475–483. 
DOI 10.1017/S0004972700015938 | 
MR 1248051[5] L. H.  Erbe, Q. K.  Kong and B. G.  Zhang: 
Oscillation Theory for Functional Differential equations. Marcel Dekker, New York, 1995. 
MR 1309905[6] I.  Gyori and G.  Ladas: 
Oscillation Theory of Delay Differential Equations with Applications. Oxford Univ. Press, London, 1991. 
MR 1168471[7] J. R.  Graef, B.  Yang and B. G.  Zhang: 
Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients. Math. Bohemica 124 (1999), 87–102. 
MR 1687484[8] M. R. S.  Kulenovic and S.  Hadziomerspahic: 
Existence of nonoscillatory solution of second order linear neutral delay equation. J.  Math. Anal. Appl. 228 (1998), 436–448. 
DOI 10.1006/jmaa.1997.6156 | 
MR 1663585[10] C. H.  Ou and J. S. W.  Wong: 
Forced oscillation of $n$th-order functional differential equations. J.  Math. Anal. Appl. 262 (2001), 722–732. 
DOI 10.1006/jmaa.2001.7614 | 
MR 1859335[11] S.  Tanaka: 
Existence of positive solutions for a class of higher order neutral differential equations. Czechoslovak Math.  J. 51 (2001), 573–583. 
DOI 10.1023/A:1013736122991 | 
MR 1851548[12] N.  Parhi and R. N.  Rath: 
Oscillation criteria for forced first order neutral differential equations with variable coefficients. J.  Math. Anal. Appl. 256 (2001), 525–241. 
DOI 10.1006/jmaa.2000.7315 | 
MR 1821755[13] B. G.  Zhang and B.  Yang: 
New approach of studying the oscillation of neutral differential equations. Funkcial Ekvac. 41 (1998), 79–89. 
MR 1627357[15] Yong Zhou and B. G.  Zhang: 
Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 15 (2002), 867–874. 
DOI 10.1016/S0893-9659(02)00055-1 | 
MR 1920988