Article
Keywords:
natural operator; product preserving bundle functor; Weil algebra
Summary:
We define equivariant tensors for every non-negative integer  $p$ and every Weil algebra  $A$ and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type $(p,0)$ on an $n$-dimensional manifold  $M$ to tensor fields of type $(p,0)$ on  $T^AM$ if $1\le p\le n$. Moreover, we determine explicitly the equivariant tensors for the Weil algebras ${\mathbb D}^r_k$, where $k$ and $r$  are non-negative integers.
References:
                        
[1] J.  Gancarzewicz, W.  Mikulski and Z.  Pogoda: 
Lifts of some tensor fields and connections to product preserving functors. Nagoya Math.  J. 135 (1994), 1–41. 
DOI 10.1017/S0027763000004931 | 
MR 1295815[3] P. Kolář, P.  W.  Michor and J.  Slovák: 
Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. 
MR 1202431[4] M.  Mikulski: 
Natural transformations transforming functions and vector fields to functions on some natural bundles. Math. Bohem. 117 (1992), 217–223. 
MR 1165899 | 
Zbl 0810.58004[5] W. M.  Mikulski: 
The linear natural operators lifting 2-vector fields to some Weil bundles. Note Mat. 19 (1999), 213–217. 
MR 1816875 | 
Zbl 1008.58004