Previous |  Up |  Next


differential equation; higher order nonlinear neutral differential equation; oscillation; oscillating coefficients
In this paper we are concerned with the oscillation of solutions of a certain more general higher order nonlinear neutral type functional differential equation with oscillating coefficients. We obtain two sufficient criteria for oscillatory behaviour of its solutions.
[1] R. P.  Agarwal, Said R.  Grace and Donal  O’Regan: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, 2000. MR 1774732
[2] D.  Bainov and D. P.  Mishev: Oscillation Theory of Operator-Differential Equations. World Scientific, Singapore-New Yersey, 1995. MR 1370659
[3] G. S.  Ladde, V.  Lakshmikantham and B. G.  Zhang: Oscillation Theory of Differential Equations with Deviating Arguments. M. Dekker, New York, 1987. MR 1017244
[4] D.  Bainov and D. P.  Mishev: Oscillation Theory for Neutral Differential Equations with Delay. Adam Hilger, New York, 1991. MR 1147908
[5] I.  Gyori and G.  Ladas: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991. MR 1168471
[6] N.  Parhi: Oscillations of higher order differential equations of neutral type. Czechoslovak Math.  J. 50(125) (2000), 155–173. DOI 10.1023/A:1022405707349 | MR 1745469 | Zbl 1045.34043
[7] Feng Yuecai: Oscillatory behavior of higher order nonlinear neutral functional differential equation with oscillating coefficients. J.  South Chine Normal Unv. (1999), 6–11. (Chinese) MR 1759521
[8] P. R.  Agarwal and S. R.  Grace: The oscillation of higher order differential equations with deviating arguments. Comput. Math. Appl. 38 (1999), 185–199. DOI 10.1016/S0898-1221(99)00193-5 | MR 1703416
[9] S. R.  Grace and B. S.  Lalli: Oscillation theorems for certain neutral differential equations. Czechoslovak Math.  J. 38 (1988), 745–783. MR 0962917
[10] R.  P.  Agarwal, E.  Thandapani and P. J. Y.  Wong: Oscillation of higher order neutral differential equations. Appl. Math. Letters 10 (1997), 71–78. DOI 10.1016/S0893-9659(96)00114-0 | MR 1429478
Partner of
EuDML logo