Previous |  Up |  Next

Article

Title: Isotype knice subgroups of global Warfield groups (English)
Author: Megibben, Charles
Author: Ullery, William
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 109-132
Summary lang: English
.
Category: math
.
Summary: If $H$ is an isotype knice subgroup of a global Warfield group $G$, we introduce the notion of a $k$-subgroup to obtain various necessary and sufficient conditions on the quotient group $G/H$ in order for $H$ itself to be a global Warfield group. Our main theorem is that $H$ is a global Warfield group if and only if $G/H$ possesses an $H(\aleph _0)$-family of almost strongly separable $k$-subgroups. By an $H(\aleph _0)$-family we mean an Axiom 3 family in the strong sense of P. Hill. As a corollary to the main theorem, we are able to characterize those global $k$-groups of sequentially pure projective dimension $\le 1$. (English)
Keyword: global Warfield group
Keyword: isotype subgroup
Keyword: knice subgroup
Keyword: $k$-subgroup
Keyword: separable subgroup
Keyword: compatible subgroups
Keyword: Axiom 3
Keyword: closed set method
Keyword: global $k$-group
Keyword: sequentially pure projective dimension
MSC: 20K21
MSC: 20K27
idZBL: Zbl 1157.20028
idMR: MR2206290
.
Date available: 2009-09-24T11:31:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128057
.
Reference: [1] U. Albrecht and P. Hill: Butler groups of infinite rank and axiom 3.Czechoslovak Math. J. 37 (1987), 293–309. MR 0882600
Reference: [2] L. Fuchs: Infinite Abelian Groups.Vol. II, Academic Press, New York, 1973. Zbl 0257.20035, MR 0349869
Reference: [3] L. Fuchs and P. Hill: The balanced projective dimension of abelian $p$-groups.Trans. Amer. Math. Soc. 293 (1986), 99–112. MR 0814915
Reference: [4] L. Fuchs and M. Magidor: Butler groups of arbitrary cardinality.Israel J. Math. 84 (1993), 239–263. MR 1244670, 10.1007/BF02761702
Reference: [5] P. Hill: The third axiom of countability for abelian groups.Proc. Amer. Math. Soc. 82 (1981), 347–350. Zbl 0467.20041, MR 0612716, 10.1090/S0002-9939-1981-0612716-0
Reference: [6] P. Hill: Isotype subgroups of totally projective groups.Lecture Notes in Math vol. 874, Springer-Verlag, New York, 1981, pp. 305–321. Zbl 0466.20028, MR 0645937
Reference: [7] P. Hill and C. Megibben: Knice subgroups of mixed groups.Abelian Group Theory, Gordon-Breach, New York, 1987, pp. 89–109. MR 1011306
Reference: [8] P. Hill and C. Megibben: Mixed groups.Trans. Amer. Math. Soc. 334 (1992), 121–142. MR 1116315, 10.1090/S0002-9947-1992-1116315-8
Reference: [9] P. Hill and C. Megibben: The nonseparability of simply presented mixed groups.Comment. Math. Univ. Carolinae 39 (1998), 1–5. MR 1622308
Reference: [10] P. Hill and W. Ullery: Isotype subgroups of local Warfield groups.Comm. Algebra 29 (2001), 1899–1907. MR 1837949
Reference: [11] C. Megibben and W. Ullery: Isotype subgroups of mixed groups.Comment. Math. Univ. Carolinae 42 (2001), 421–442. MR 1859590
Reference: [12] C. Megibben and W. Ullery: Isotype Warfield subgroups of global Warfield groups.Rocky Mountain J. Math. 32 (2002), 1523–1542. MR 1987623, 10.1216/rmjm/1181070038
Reference: [13] R. Warfield: Simply presented groups.Proc. Sem. Abelian Group Theory, Univ. of Arizona lecture notes, 1972.
.

Files

Files Size Format View
CzechMathJ_56-2006-1_9.pdf 421.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo