[1] J. Bang-Jensen, G. Gutin: 
Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2000. 
MR 2472389[3] J. A. Bondy: 
Diconnected orientations and a conjecture of Las Vergnas. J. London Math. Soc. 14 (1976), 277–282. 
MR 0450115 | 
Zbl 0344.05124[4] P. Camion: 
Chemins et circuits hamiltoniens des graphes complets. C. R.  Acad. Sci. Paris 249 (1959), 2151–2152. 
MR 0122735 | 
Zbl 0092.15801[5] W. D. Goddard, O. R. Oellermann: 
On the cycle structure of multipartite tournaments. In: Graph Theory Combinat. Appl.  1, Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schenk (eds.), Wiley-Interscience, New York, 1991, pp. 525–533. 
MR 1170802[6] Y. Guo: Semicomplete multipartite digraphs: a generalization of tournaments. Habilitation thesis, RWTH Aachen, 1998.
[8] G. Gutin, A. Yeo: 
Note on the path covering number of a semicomplete multipartite digraph. J. Combinat. Math. Combinat. Comput. 32 (2000), 231–237. 
MR 1748910[10] L. Rédei: Ein kombinatorischer Satz. Acta Litt. Sci. Szeged 7 (1934), 39–43.
[12] L. Volkmann: 
Strong subtournaments of multipartite tournaments. Australas. J.  Combin. 20 (1999), 189–196. 
MR 1723872 | 
Zbl 0935.05051[13] L. Volkmann: 
Cycles in multipartite tournaments: results and problems. Discrete Math. 245 (2002), 19–53. 
MR 1887047 | 
Zbl 0996.05063[15] L. Volkmann, S. Winzen: Almost regular $c$-partite tournaments contain a strong subtournament of order  $c$ when $c \ge 5$. Submitted.
[17] A. Yeo: 
Semicomplete multipartite digraphs. Ph.D. Thesis, Odense University, 1998. 
Zbl 0916.05049[19] K.-M.  Zhang: 
Vertex even-pancyclicity in bipartite tournaments. Nanjing Daxue Xuebao Shuxue Bannian Kan 1 (1984), 85–88. 
MR 0765176