| Title: | On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices (English) | 
| Author: | Chen, Jinsong | 
| Author: | Tan, Yijia | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 56 | 
| Issue: | 4 | 
| Year: | 2006 | 
| Pages: | 1117-1129 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $n$  be a positive integer, and $C_{n} (r)$ the set of all $n\times n$ $r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_{n}=\bigcup _{r=0}^{n-1}C_{n}(r)$. For any fixed $r$-circulant matrix  $C$ ($C\ne 0$) in  $G_{n}$, we define an operation “$\ast $” in  $G_{n}$ as follows: $A\ast B=ACB$ for any $A,B$ in  $G_{n}$, where $ACB$  is the usual product of Boolean matrices. Then $(G_{n},\ast )$  is a semigroup. We denote this semigroup by  $G_{n}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix  $C$. Let $F$  be an idempotent element in  $G_{n}(C)$ and $M(F)$ the maximal subgroup in  $G_{n}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given. (English) | 
| Keyword: | generalized ciculant Boolean matrix | 
| Keyword: | sandwich semigroup | 
| Keyword: | idempotent element | 
| Keyword: | maximal subgroup | 
| MSC: | 06F30 | 
| MSC: | 15A33 | 
| MSC: | 15A36 | 
| idZBL: | Zbl 1164.15323 | 
| idMR: | MR2280798 | 
| . | 
| Date available: | 2009-09-24T11:41:35Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128134 | 
| . | 
| Reference: | [1] C.-Y.  Chao, M.-C.  Zhang: On generalized circulants over a Boolean algebra.Linear Algebra Appl. 62 (1984), 195–206. MR 0761067, 10.1016/0024-3795(84)90095-8 | 
| Reference: | [2] W.-C.  Huang: On the sandwich semigroups of circulant Boolean matrices.Linear Algebra Appl. 179 (1993), 135–160. Zbl 0768.20031, MR 1200148 | 
| Reference: | [3] Mou-Chen Zhang: On the maximal subgroup of the semigroup of generalized circulant Boolean matrices.Linear Algebra Appl. 151 (1991), 229–243. MR 1102151 | 
| Reference: | [4] A. H. Clifford, G. B. Preston: The Algebra Theory of Semigroups, Vol.  1.Amer. Math. Soc., Providence, 1961. MR 0132791 | 
| Reference: | [5] J. S. Montague, R. J. Plemmons: Maximal subgroup of semigroup of relations.J. Algebra 13 (1969), 575–587. MR 0252539 | 
| Reference: | [6 K.-H. Kim, S. Schwarz] : The semigroup of circulant Boolean matrices.Czechoslovak Math. J. 26(101) (1976), 632–635. Zbl 0347.20037, MR 0430121 | 
| Reference: | [7] J.-S. Chen, Y.-J.  Tan: The idempotent elements in the sandwich semigroup of generalized elements Boolean mareices.J.  Fuzhou Univ. Nat. Sci. 31 (2003), 505–509. MR 2023977 | 
| Reference: | [8] K. Ireland, M.  Rosen: A Classical Introduction to Modern Number Theory.Springer-Verlag, New York, 1982. MR 0661047 | 
| . |