| Title: | Operators of Hankel type (English) | 
| Author: | Bermudo, S. | 
| Author: | Marcantognini, S. A. M. | 
| Author: | Morán, M. D. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 56 | 
| Issue: | 4 | 
| Year: | 2006 | 
| Pages: | 1147-1163 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Hankel operators and their symbols, as generalized by V. Pták and P. Vrbová, are considered. The present note provides a parametric labeling of all the Hankel symbols of a given Hankel operator $X$ by means of Schur class functions. The result includes uniqueness criteria and a Schur like formula. As a by-product, a new proof of the existence of Hankel symbols is obtained. The proof is established by associating to the data of the problem a suitable isometry $V$ so that there is a bijective correspondence between the symbols of $X$ and the minimal unitary extensions of $V$. (English) | 
| Keyword: | Hankel operators | 
| Keyword: | Hankel symbols | 
| MSC: | 47A20 | 
| MSC: | 47B35 | 
| idZBL: | Zbl 1164.47326 | 
| idMR: | MR2280800 | 
| . | 
| Date available: | 2009-09-24T11:41:48Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128136 | 
| . | 
| Reference: | [1] D. Z. Arov and L. Z. Grossman: Scattering matrices in the theory of extensions of isometric operators.Soviet Math. Dokl. 27 (1983), 518–522. MR 0705184 | 
| Reference: | [2] M. Cotlar and C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz.C. R. Acad. Sci Paris Sér. I Math. 305 (1987), 167–170. MR 0903954 | 
| Reference: | [3] M. Cotlar and C. Sadosky: Integral representations of bounded Hankel forms defined in scattering systems with a multiparametric evolution group.Operator Theory: Adv. Appl. 35 (1988), 357–375. MR 1017676 | 
| Reference: | [4] A. Dijksma, S. A. M. Marcantognini and H. S. V. de Snoo: A Schur type analyisis of the minimal unitary Hilbert space extensions of a Kreĭn space isometry whose defect subspaces are Hilbert spaces.Z. Anal. Anwendungen 13 (1994), 233–260. MR 1287152, 10.4171/ZAA/513 | 
| Reference: | [5] R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space.Proc. Amer. Math. Soc. 17 (1966), 413–415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1 | 
| Reference: | [6] C. H.  Mancera and P. J. Paúl: On Pták’s generalization of Hankel operators.Czechoslovak Math. J. 51 (2001), 323–342. MR 1844313, 10.1023/A:1013746930743 | 
| Reference: | [7] C. H.  Mancera and P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X = XT_1^*$.Integral Equations Operator Theory 39 (2001), 475–495. MR 1829281 | 
| Reference: | [8] M. D. Morán: On intertwining dilations.J. Math. Anal. Appl. 141 (1989), 219–234. MR 1004596, 10.1016/0022-247X(89)90218-7 | 
| Reference: | [9] V. Pták: Factorization of Toeplitz and Hankel operators.Math. Bohem. 122 (1997), 131–140. MR 1460943 | 
| Reference: | [10] V. Pták and P. Vrbová: Operators of Toeplitz and Hankel type.Acta Sci. Math. (Szeged) 52 (1988), 117–140. | 
| Reference: | [11] V. Pták and P. Vrbová: Lifting intertwining relations.Integral Equations Operator Theory 11 (1988), 128–147. MR 0920738, 10.1007/BF01236657 | 
| . |