| Title: | Graphic sequences of trees and a problem of Frobenius (English) | 
| Author: | Gupta, Gautam | 
| Author: | Joshi, Puneet | 
| Author: | Tripathi, Amitabha | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 57 | 
| Issue: | 1 | 
| Year: | 2007 | 
| Pages: | 49-52 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We give a necessary and sufficient condition for the existence of a tree of order $n$ with a given degree set. We relate this to a well-known linear Diophantine problem of Frobenius. (English) | 
| Keyword: | graphic | 
| Keyword: | tree-graphic | 
| MSC: | 05C07 | 
| idZBL: | Zbl 1174.05023 | 
| idMR: | MR2309947 | 
| . | 
| Date available: | 2009-09-24T11:43:39Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128153 | 
| . | 
| Reference: | [1] T. S.  Ahuja, A.  Tripathi: On the order of a graph with a given degree set.The Journal of Combinatorial Mathematics and Combinatorial Computing 57 (2006), 157–162. MR 2226692 | 
| Reference: | [2] P.  Erdös, T.  Gallai: Graphs with prescribed degrees of vertices.Mat. Lapok 11 (1960), 264–274. (Hungarian) | 
| Reference: | [3] R. K.  Guy: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, Volume  I, Third Edition.Springer-Verlag, New York, 2004. MR 2076335 | 
| Reference: | [4] S. L.  Hakimi: On the realizability of a set of integers as degrees of the vertices of a graph.J.  SIAM Appl. Math. 10 (1962), 496–506. MR 0148049, 10.1137/0110037 | 
| Reference: | [5] V.  Havel: A remark on the existence of finite graphs.Čas. Pěst. Mat. 80 (1955), 477–480. (Czech) | 
| Reference: | [6] S. F.  Kapoor, A. D.  Polimeni, and C. E.  Wall: Degree sets for graphs.Fund. Math. 95 (1977), 189–194. MR 0480200, 10.4064/fm-95-3-189-194 | 
| . |