Article
Keywords:
$\scr {L}\Im $-space; foncteur; catégorie abélienne
Summary:
We construct the category of quotients of $\mathcal {L}\Im $-spaces and we show that it is Abelian. This answers a question of L.  Waelbroeck from 1990.
References:
                        
[1] H. Hogbe Nlend: 
Théorie des Bornologies et Applications. Lect. Notes Math. Vol. 213. Springer-Verlag, Berlin-Heidelberg-New York, 1971. (French) 
MR 0625157 
[2] A.  Grothendieck: 
Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Amer. Math. Soc. No. 16. AMS, Providence, 1966. 
MR 1609222 
[3] L.  Waelbroeck: 
Topological Vector Spaces and Algebras. Lect. Notes Math. Vol.  230. Springer-Verlag, Berlin-Heidelberg-New York, 1971. 
MR 0467234 
[4] L.  Waelbroeck: 
Quotient Banach Spaces, Spectral theory 8. Banach Cent. Publ., Warsaw, 1982, pp. 553–562. 
MR 0738315 
[5] L.  Waelbroeck: 
Holomorphic functions taking their values in a quotient bornological space. Linear operators in function spaces. Proc. 12th  Int. Conf. Oper. Theory, Timisoara, Rommania, 1988. Oper. Theory, Adv. Appl. 43 (1990), 323–335. 
MR 1090139