[1] D. R.  Adams, L. I.  Hedberg: 
Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften  314. Springer-Verlag, Berlin-Heidelberg, 1995. 
MR 1411441 
[2] D. H.  Armitage, S. J.  Gardiner: 
Classical Potential Theory. Springer-Verlag, London, 2001. 
MR 1801253 
[4] L. E. Fraenkel: 
Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, Cambridge, 2000. 
MR 1751289 | 
Zbl 0947.35002 
[5] L. L.  Helms: 
Introduction to Potential Theory. Pure and Applied Mathematics  22. John Wiley & Sons, 1969. 
MR 0261018 
[7] S.  Jerison, C. E.  Kenig: 
Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 47 (1982), 80–147. 
DOI 10.1016/0001-8708(82)90055-X 
[10] P.  Koskela, H.  Tuominen: Measure density and extendability of Sobolev functions. (to appear).
[11] J.  Král: 
Integral Operators in Potential Theory. Lecture Notes in Mathematics  823. Springer-Verlag, Berlin, 1980, pp. . 
MR 0590244 
[12] N. L.  Landkof: 
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) 
MR 0214795 
[13] V. G.  Maz’ya, S. V.  Poborchi: 
Differentiable Functions on Bad Domains. World Scientific Publishing, Singapore, 1997. 
MR 1643072 
[14] W.  McLean: 
Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000. 
MR 1742312 | 
Zbl 0948.35001 
[16] D.  Medková: 
Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48 (1998), 768–784. 
DOI 10.1023/A:1022447908645 
[18] I.  Netuka: 
Smooth surfaces with infinite cyclic variation. Čas. Pěst. Mat. 96 (1971), 86–101. (Czech) 
MR 0284553 | 
Zbl 0204.08002 
[19] M.  Schechter: 
Principles of Functional Analysis. Am. Math. Soc., Providence, 2002. 
MR 1861991 
[20] G. E.  Shilov: 
Mathematical Analysis. Second Special Course. Nauka, Moskva, 1965. (Russian) 
MR 0219869 
[21] Ch. G.  Simader, H.  Sohr: 
The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series  360. Addison Wesley Longman Inc., Essex, 1996. 
MR 1454361 
[23] O. Steinbach, W. L. Wendland: 
On C.  Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J.  Math. Anal. Appl. 262 (2001), 733–748. 
DOI 10.1006/jmaa.2001.7615 | 
MR 1859336 
[25] K.  Yosida: 
Functional Analysis. Springer-Verlag, Berlin, 1965. 
Zbl 0126.11504