[1] R. A. Horn, Ch. R. Johnson: 
Matrix Analysis. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney, 1985, (Russian translation R. Horn, Q. Dßonson: Matriqny analiz, Moskva, Mir, 1989). 
MR 0832183[2] P. Kratochvíl, A. Lešanovský: 
A contractive property in finite state Markov chains. Czechoslovak Math. J. 35(110) (1985), 491–509. 
MR 0803042[3] T. S. Leóng: 
A note on upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices. Linear Algebra Appl. 106 (1988), 1–4. 
MR 0951823[4] A. Lešanovský: 
Coefficients of ergodicity generated by non-symetrical vector norms. Czechoslovak Math. J. 40(115) (1990), 284–294. 
MR 1046294[10] E. Seneta: 
Non-Negative Matrices and Markov Chains. Springer-Verlag, New York, Heidelberg and Berlin, 1981. 
MR 2209438 | 
Zbl 0471.60001[11] E. Seneta: 
Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Prob. 20 (1988), 228–230. 
DOI 10.2307/1427277 | 
MR 0932541[13] E. Seneta, C. P. Tan: 
The Euclidean and Frobenius ergodicity coefficients and spectrum localization. Bull. Malaysia Math. Soc. (7)1 (1984), 1–7. 
MR 0767334[16] C. P. Tan: 
Spectrum localization of an ergodic stochastic matrix. Bull. Inst. Math. Acad. Sinica 12 (1984), 147–151. 
MR 0765108 | 
Zbl 0551.15009[17] C. P. Tan: 
Spectrum localization using Hőlder norms. Houston J. Math. 12 (1986), 441–449. 
MR 0869127