[1] Note to the problem of intersecting broken lines (Czech). Čas. pěst. mat. 83 (1958), 236–240.
[2] On a certain group of endomorphisms on a simply ordered set I (Czech). Čas. pěst. mat. 84 (1959), 177–182.
[3] On a certain group of endomorphisms on a simply ordered set II (Czech). Čas. pěst. mat. 85 (1960), 263–273.
[4] 
Bemerkung zu einer Halbgruppe der Endomorphismen auf einer einfach geordneten Menge. Čas. pěst. mat. 85 (1960), 410–417. 
MR 0130312 | 
Zbl 0122.02601[5] On singular systems of integer-differential equations with constant coefficients and their realization by linear electric circerits (Czech). Práce ČVUT, řada III elektrotechnická, č. 5 (1965), 63–72.
[6] 
On characters of chains (Czech). Čas. pěst. mat. 91 (1966), 1–3 (Spoluautor: O. Kowalski.). 
MR 0190043[7] 
On characters of semigroups whose idempotents form a chain (Czech). Čas. pěst. mat. 91 (1966), 4–7. 
MR 0197602[8] Note to the Richards transformation (Russian). Acta Polytechnica — Práce ČVUT, III 1 (1967), 27–34.
[9] 
The diameter of the graph of a semigroup (Czech). Čas. pěst. mat. 92 (1967), 206–211. 
MR 0223275[10] 
On periodic and recurrent compact groupoids. Čas. pěst. mat. 93 (1968), 262–272. 
MR 0252550[11] 
A contribution to the foundations of network theory using the distribution theory. Czechoslov. Math. J. 19(94) (1969), 697–710. 
MR 0253047[12] 
On a certain relation for closure operations on a semigroup. Czechoslov. Math. J. 20(95) (1970), 220–231. 
MR 0260905[13] 
Note on a certain relation for closure operations on a compact semigroup. Czechoslov. Math. J. 20(95) (1970), 337–339. 
MR 0260906[14] 
Contribution to the foundations of network theory using the distribution theory, II. Czechoslov. Math. J. 21(96) (1971), 35–45. 
MR 0276763 | 
Zbl 0217.16703[16] 
Right prime ideals and maximal right ideals in semigroups. Mat. Čas. Slovensk. Akad. Vied 21 (1971), 87–90. 
MR 0302801 | 
Zbl 0219.20043[17] 
A note on classes of regularity in semigroups. Mat. Čas. Slovensk. Akad. Vied 21 (1971), 312–317. 
MR 0301122 | 
Zbl 0235.20057[19] 
Archimedean equivalence on ordered semigroups. Czechoslov. Math. J. 22(97) (1972), 210–219. 
MR 0294200 | 
Zbl 0251.06025[20] 
A note on an ideal quasi-order in semigroups. Publ. Math. Debrecen 18 (1972), 177–182. 
MR 0308302[21] 
A characterization of semilattices of left or right groups. Czechoslov. Math. J. 22(97) (1972), 522–524. 
MR 0313431 | 
Zbl 0247.20073[23] 
A relation for closure operations on a semigroup. Mat. Čas. Slovensk. Akad. Vied 23 (1973), 249–256. 
MR 0364509 | 
Zbl 0265.20053[26] 
$T$-prime subsets in semigroups. Mat. Čas. Slovensk. Akad. Vied. 25 (1975), 223–229. 
MR 0399320[27] 
On semigroups having regular globals. Colloquia Math. Soc. János Bolyai 20. Algebraic theory of semigroups, Szeged, 1976, pp. 453–461. 
MR 0541132[28] 
The chain of right ideals in rings and semigroups. Ann. Univ. Sci. Budapest, Sectio Math. 20 (1977), 21, 22. 
MR 0476798 | 
Zbl 0372.16012[30] 
On the intersection graph of a commutative distributive groupoid. Math. Slovaca 29 (1979), 57–62. 
MR 0561777 | 
Zbl 0408.20040[33] 
Relative compact elements in lattices. Colloquia Math. Soc. János Bolayai 33, Szeged (1980), 667–674. 
MR 0724289[34] 
On representations of tolerance ordered commutative semigroups. Czechoslov. Math. J. 31(106) (1981), 153–158. 
MR 0604121 | 
Zbl 0469.20035[37] 
Note on a completely symmetrical semigroup. Notes on Semigroups VII, 1981–4, 1–4, Dept. of Math. Karl Marx Univ. of Economics, Budapest. 
Zbl 0478.20042[38] 
Atomicity of tolerance lattices of commutative semigroups. Czechoslov. Math. J. 33(108) (1983), 485–498. 
MR 0718931 | 
Zbl 0535.20041[39] 
Modularity and distributivity of tolerance lattices of commutative inverse semigroups. Czechoslov. Math. J. 35(110) (1985), 146–157. 
MR 0779342 | 
Zbl 0581.20058[40] 
Modularity and distributivity of tolerance lattices of commutative separative semigroups. Czechoslov. Math. J. 35(110) (1985), 333–337. 
MR 0787135 | 
Zbl 0573.20062[42] 
Semigroups whose proper one-sided ideals are $t$-archimedean. Mat. Věstnik 37 (1985), 315–321. 
Zbl 0601.20055[43] 
Tolerance distributive and tolerance modular varieties of commutative semigroups. Czechoslov. Math. J. 36(11) (1986), 485–488. 
MR 0847775 | 
Zbl 0614.20043[44] 
On a certain class of BCK-algebras with condition (S). Math. Japonica 31 (1986), no. 5, 775–782. 
MR 0872798 | 
Zbl 0616.03044[45] 
Tolerance distributive and tolerance boolean varieties of semigroups. Czechoslov. Math. J. 36(111) (1986), 617–622. 
MR 0863191 | 
Zbl 0612.20033[46] 
Note on band decompositions of weakly exponential semigroups. Ann. Univ. Sci. Budapest, Sectio Math 29 (1986), 139–141. 
MR 0893495 | 
Zbl 0622.20054[48] 
Note on the congruence lattice of a commutative separative semigroup. Čas. pěst. mat. 113 (1988), 74–79. 
MR 0930808 | 
Zbl 0639.20043[49] 
Commutative semigroups whose lattice of tolerances is boolean. Czechoslov. Math. J. 38(113) (1988), 226–230. 
MR 0946290 | 
Zbl 0657.20052[51] 
Direct decomposability of tolerances and congruences on semigroups. Czechoslov. Math. J. 38(113) (1988), 701–704. 
MR 0962913 | 
Zbl 0668.08002[52] 
Algebras with tolerance extension property in $O$. Czechoslov. Math. J. 39(114) (1989), 142–146, (coauthor: I. Chajda). 
MR 0983491[53] 
On $\alpha $-ideals and generalized $\alpha $-ideals in semigroups. Czechoslov. Math. J. 39(114) (1989), 522–527, (coauthor: M. M. Miccoli). 
MR 1006318 | 
Zbl 0684.20053[54] 
Tolerance modular varieties of semigroups. Czechoslov. Math. J. 40(115) (1990), 441–452. 
MR 1065023 | 
Zbl 0731.20039[55] 
On varieties of regular $\ast $-semigroups. Czechoslov. Math. J. 42(116) (1991), 110–119. 
MR 1087630[56] 
On varieties of regular $\ast $-semigroups, II. Czechoslov. Math. J. 41(116) (1991), 512–517. 
MR 1117804