Previous |  Up |  Next


Title: The construction of $A$-solvable Abelian groups (English)
Author: Albrecht, Ulrich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 3
Year: 1994
Pages: 413-430
Category: math
MSC: 16D90
MSC: 16S50
MSC: 20K20
MSC: 20K25
MSC: 20K40
idZBL: Zbl 0823.20056
idMR: MR1288162
DOI: 10.21136/CMJ.1994.128480
Date available: 2009-09-24T09:40:14Z
Last updated: 2020-07-29
Stable URL:
Reference: [A3] Albrecht, U.: Faithful abelian groups of infinite rank.Proc. Amer. Math. Soc. 103 (1) (1988), 21–26. Zbl 0646.20042, MR 0938637, 10.1090/S0002-9939-1988-0938637-8
Reference: [A1] Albrecht, U.: Endomorphism rings of faithfully flat abelian groups.Results in Mathematics 17 (1990), 179–201. Zbl 0709.20031, MR 1052585, 10.1007/BF03322457
Reference: [A2] Albrecht, U.: Abelian groups $A$ such that the category of $A$-solvable groups is preabelian.Contemporary Mathematics 87 (1989), 117–131. Zbl 0691.20038, MR 0995270, 10.1090/conm/087/995270
Reference: [A4] Albrecht, U.: Endomorphism rings and a generalization of torsion-freeness and purity.Communications in Algebra 17 (5) (1989), 1101–1135. Zbl 0691.20040, MR 0993391, 10.1080/00927878908823776
Reference: [ACH] Albrecht, U.: Extension functors on the category of $A$-solvable abelian groups.Czech. Math. J. 41 (116) (1991), 685–694. Zbl 0776.20018, MR 1134957
Reference: [AWM] Albrecht, U.: Endomorphism rings and Fuchs’ Problem 47.(to appear).
Reference: [AH] Albrecht, U., and Hausen, J.: Modules with the quasi-summand intersection property.Bull. Austral. Math. Soc. 44 (1991), 189–201. MR 1126356, 10.1017/S0004972700029610
Reference: [AL] Arnold, D., and Lady, L.: Endomorphism rings and direct sums of torsion-free abelian groups.Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 0417314, 10.1090/S0002-9947-1975-0417314-1
Reference: [AM] Arnold, D., and Murley, E.: Abelian groups, $A$, such that $\mathop {\mathrm Hom}\nolimits (A,-)$ preserves direct sums of copies of $A$.Pac. J. of Math. 56 (1975), 7–20. MR 0376901, 10.2140/pjm.1975.56.7
Reference: [DG] Dugas, M., and Göbel, R.: Every cotorsion-free ring is an endomorphism ring.Proc. London Math. Soc. 45 (1982), 319–336. MR 0670040
Reference: [F] Faticoni, T.: Semi-local localization of rings and subdirect decomposition of modules.J. of Pure and Appl. Alg. 46 (1987), 137–163. 10.1016/0022-4049(87)90090-9
Reference: [FG] Faticoni, T., and Goeters, P.: Examples of torsion-free abelian groups flat as modules over their endomorphism rings.Comm. in Algebra 19 (1991), 1–27. MR 1092548, 10.1080/00927879108824126
Reference: [FG1] Faticoni, T., and Goeters, P.: On torsion-free $\mathop {\mathrm Ext}\nolimits $.Comm. in Algebra 16 (9) (1988), 1853–1876. MR 0952214
Reference: [Fu] Fuchs, L.: Infinite Abelian Groups Vol. I/II.Academic Press, New York, London, 1970/73. MR 0255673
Reference: [FR] Gruson, L., and Raynaud, M.: Criteres de platitude et de projectivite.Inv. Math. 13 (1971), 1–89. MR 0308104, 10.1007/BF01390094
Reference: [H] Hausen, J.: Modules with the summand intersection property.Comm. in Algebra 17 (1989), 135–148. Zbl 0667.16020, MR 0970868, 10.1080/00927878908823718
Reference: [R] Reid, J.: A note on torsion-free abelian groups of finite rank.Proc. Amer. Math. Soc. 13 (1962), 222–225. MR 0133356, 10.1090/S0002-9939-1962-0133356-4
Reference: [ST] Stenström, B.: Rings of Quotients.Springer Verlag, Berlin, New York, Heidelberg, 1975. MR 0389953
Reference: [W] Warfield, R.: Homomorphisms and duality for torsion-free groups.Math. Z. 107 (1968), 189–200. Zbl 0169.03602, MR 0237642, 10.1007/BF01110257


Files Size Format View
CzechMathJ_44-1994-3_3.pdf 1.872Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo