[2] C. Bennett and R. Sharpley: 
Interpolation of Operators. Academic Press, Inc., Boston-San Diego-New York-Berkeley-London-Sydney-Tokyo-Toronto, 1988. 
MR 0928802[5] R. C. Brown and D. B. Hinton: 
An interpolation inequality and applications, Inequalities and Applications. R. P. Agarwal (ed.), World Scientific, Singapore-New Jersey-London-Hong Kong, 1994, pp. 87–101. 
MR 1299547[6] R. C. Brown and B. Opic: 
Embeddings of weighted Sobolev spaces into spaces of continuous functions. Proc. Roy. Soc. Lond. Ser. A 439 (1992), 279–296. 
DOI 10.1098/rspa.1992.0150 | 
MR 1193004[7] D. E. Edmunds and W. D. Evans: 
Spectral Theory and Differential Operators. Oxford University Press, Oxford, UK, 1987. 
MR 0929030[8] D. E. Edmunds and R. Hurri: Weighted Poincaré inequalities and Minkowski content. Proc. Roy. Soc. Edinburgh (to appear).
[10] D. E. Edmunds, B. Opic and L. Pick: 
Poincaré and Friedrichs inequalities in abstract Sobolev spaces. Math. Proc. Cambridge Philos. Soc. 113 (1993), 355–379. 
DOI 10.1017/S0305004100076027 | 
MR 1198418[11] D. E. Edmunds, B. Opic and J. Rákosník: 
Poincaré and Friedrichs inequalities in abstract Sobolev spaces II. Math. Proc. Cambridge Philos. Soc. 115 (1994), 159–173. 
DOI 10.1017/S0305004100071991 | 
MR 1253290[12] D. B. Hinton and R. Lewis: 
Singular differential operators with spectra discrete and bounded below. Proc. Roy. Soc. Edinburgh 84A (1979), 117–134. 
MR 0549875[13] A. Kufner, O. John and S. Fučík: 
Function Spaces. Academia, Prague and Noordhoff International Publishing, 1977. 
MR 0482102[14] W. A. J. Luxemburg: 
Banach Function Spaces. Thesis, Technische Hogeschool te Delft, 1955. 
MR 0072440 | 
Zbl 0068.09204[15] O. Martio and M. Vuorinen: 
Whitney cubes, $p$-capacity, and Minkowski content. Exposition. Math. 5 (1987), 17–40. 
MR 0880256[16] M. A. Naimark: 
Linear Differential Operators, Part II. Frederick Ungar, New York, 1968. 
MR 0262880 | 
Zbl 0227.34020[17] J. Nečas: 
Les méthodes directes en théorie des équations elliptiques. Academia, Prague and Masson, Paris, 1967. 
MR 0227584[18] B. Opic and A. Kufner: 
Hardy-type Inequalities. Longman Scientific and Technical, Harlow, Essex, UK, 1990. 
MR 1069756[19] E. M. Stein: 
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. 
MR 0290095 | 
Zbl 0207.13501