| Title:
             | 
Order properties of splitting subspaces in an inner product space (English) | 
| Author:
             | 
Pták, Pavel | 
| Author:
             | 
Weber, Hans | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Slovaca | 
| ISSN:
             | 
0139-9918 | 
| Volume:
             | 
54 | 
| Issue:
             | 
2 | 
| Year:
             | 
2004 | 
| Pages:
             | 
119-126 | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
03G12 | 
| MSC:
             | 
06C15 | 
| MSC:
             | 
46C05 | 
| MSC:
             | 
81P10 | 
| idZBL:
             | 
Zbl 1065.03048 | 
| idMR:
             | 
MR2074209 | 
| . | 
| Date available:
             | 
2009-09-25T14:19:01Z | 
| Last updated:
             | 
2012-08-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/131362 | 
| . | 
| Reference:
             | 
[1] AMEMIYA L.-ARAKI H.: A remark on Pirorís paper.Publ. Res. Inst. Math. Sci. 2 (1966), 423-427. MR 0213266 | 
| Reference:
             | 
[2] CHETCUTI E.-DVUREČENSKIJ A.: A finitely additive state criterion for the completeness of inner product spaces.Lett. Math. Phys. 64 (2003), 221-227. Zbl 1041.46014, MR 2009260 | 
| Reference:
             | 
[3] DVUREČENSKIJ A.: A new algebraic criterion for completeness of inner product spaces.Lett. Math. Phys. 58 (2001), 205-208. Zbl 1005.46012, MR 1892920 | 
| Reference:
             | 
[4] DVUREČENSKIJ A.: Gleason's Theorem and Applications.Kluwer Acad. Publ., Dordrecht-Boston-London, 1993. MR 1256736 | 
| Reference:
             | 
[5] DVUREČENSKIJ A.-PTÁK P.: Quantum logics with the Riesz Interpolation Property.Math. Nachr. 271 (2004) (To appear). Zbl 1051.03052, MR 2068880 | 
| Reference:
             | 
[6] DVUREČENSKIJ A.-NEUBRUNN T.-PULMANNOVÁ S.: Finitely additive states and completeness of inner product spaces.Found. Phys. 20 (1990), 1091-1102. Zbl 0752.46008, MR 1078957 | 
| Reference:
             | 
[7] FRENICHE F.: The Vitali-Hahn-Sachs theorem for Boolean algebras with the subsequential interpolation property.Proc. Amer. Math. Soc. 92 (1984), 312-366. MR 0759653 | 
| Reference:
             | 
[8] GOODEARL K. R.: Partially ordered Abelian groups with interpolation.Math. Surveys Monogr. 20, Amer. Math. Soc, Providence, RI, 1986. Zbl 0589.06008, MR 0845783 | 
| Reference:
             | 
[9] HAMHALТER J.-PТÁK P.: A completeness criterion for inner product spaces.Bull. London Math. Soc. 19 (1987), 259-263. MR 0879514 | 
| Reference:
             | 
[10] HARDING J.: Decompositions in quantum logics.Тrans. Amer. Math. Soc. 348 (1996), 1839-1862. MR 1340177 | 
| Reference:
             | 
[11] HARDING J.: Regularity in quantum logics.Internat. J. Тheoret. Phys. 37 (1998), 1173-1212. MR 1626771 | 
| Reference:
             | 
[12] HOLLAND S. S. JR.: Orthomodularity in infinite dimensions - a theorem of M. Solér.Bull. Amer. Math. Soc. 32 (1995), 205-234. Zbl 0856.11021, MR 1307904 | 
| Reference:
             | 
[13] KALMBACH G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496 | 
| Reference:
             | 
[14] KELLER H.: Ein nicht-klassischer Hilbertischen Raum.Math. Z. 272 (1980), 42-49. MR 0576294 | 
| Reference:
             | 
[15] MAEDA F.-MAEDA S.: Theory of Symmetric Lattices.Springer-Verlag, Berlin, 1970. Zbl 0219.06002, MR 0282889 | 
| Reference:
             | 
[16] PIZIAK R.: Lattice theory, quadratic spaces, and quantum proposition systems.Found. Phys. 20 (1990), 651-665. MR 1067796 | 
| Reference:
             | 
[17] PТÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer Acad. Publ., Dordrecht, 1991. MR 1176314 | 
| Reference:
             | 
[18] PTÁK P.-WEBER H.: Lattice properties of subspace families in an inner product space.Proc. Amer. Math. Soc. 129 (2001), 2111-2117. Zbl 0968.03077, MR 1825924 | 
| Reference:
             | 
[19] SOLER M.: Characterization of Hilbert space by orthomodular spaces.Comm. Algebra 23 (1995), 219-243. MR 1311786 | 
| Reference:
             | 
[20] VARADARAJAN V.: Geometry of Quantum Theory I; II.Van Nostrand, Princeton, 1968; 1970. | 
| Reference:
             | 
[21] WEBER H.: Compactness in spaces of group-valued contents, the Vitali-Hahn-Sachs theorem and Nikodym boundedness theorem.Rocky Mountain J. Math. 16 (1986), 253-275. MR 0843053 | 
| . |