[1] BARNETT V. D.: 
A three-player extension of the gambler's ruin problem. J. Appl. Probab. 1 (1964), 321-334. 
MR 0171330 | 
Zbl 0192.25501[2] BLASI A.: 
On a random walk between a reflecting and an absorbing barrier. Ann. Probab. 4 (1976), 695-696. 
MR 0407996 | 
Zbl 0342.60050[4] EL-SHEHAWY M. A.: 
On absorption probabilities for a random walk between two different barriers. Ann. Fac. Sci. Toulouse Math. (5) I (1992), 95-103. 
MR 1191730 | 
Zbl 0765.60071[5] FELLER W.: 
An Introduction to Probability Theory and Its Applications. Vol. 1. (3rd ed.), Wiley, New York, 1968. 
MR 0228020[6] GULATI C. M.-HILL J. M.: 
A note on an alternative derivation of random walk probabilities. Sankhya Ser. A 43 (1981), 379-383. 
MR 0665880 | 
Zbl 0522.60075[8] MUNFORD A. G.: 
A first passage problem in a random walk with a quality control application. J. Roy. Statist. Soc. Ser. B 43 (1981), 142-146. 
MR 0626758 | 
Zbl 0477.60082[9] SRINIVASAN S. K.-MEHATA K. M.: Stochastic Processes. McGraw Hill, New Delhi, 1976.
[10] WEESAKUL B.: 
The random walk between a reflecting and an absorbing barrier. Ann. Math. Statist. 32 (1961), 765-769. 
MR 0125641 | 
Zbl 0109.10903