[2] AGNEW R. P.: 
Permutations preserving convergence of series. Proc. Amer. Math. Soc. 6 (1995), 563-564. 
MR 0071559[3] HOZO I.-MILLER H. I.: 
On Rieman's theorem about conditionally convergent series. Mat. Vesnik 38 (1986), 279-283. 
MR 0870948[4] KNIPERS L.-NIEDERREITER H.: 
Uniform Distribution of Sequences. John Wiley, New York-London-Sydney-Toronto, 1974. 
MR 0419394[5] KURATOWSKI, C: Topologie I. PWN, Warszava, 1958.
[6] LÁSZLÓ V.-ŠALÁT T.: 
Uniformly distributed sequences of positive integers in Baire's space. Math. Slovaca 41 (1991), 277-281. 
MR 1126664 | 
Zbl 0757.11023[7] LEVI F. W.: 
Rearrangements of convergent series. Duke Math. J. 13 (1946), 579-585. 
MR 0019135[8] PÁL L.: 
On a problem of theory of series. Mat. Lapok 12 (1961), 38-43. (Hungarian) 
MR 0145232[9] PLEASANTS P. A. B.: 
Rearrangements that preserve convergence. J. London Math. Soc. (2) 15 (1977), 134-142. 
MR 0432464 | 
Zbl 0344.40001[10] ŠALÁT T.: 
Baire's space of permutations of N and rearrangements of series. (To appear). 
Zbl 1007.54032[11] SENGUPTA H. M.: 
On rearrangements of series. Proc. Amer. Math. Soc. 1 (1950), 71-75. 
MR 0032786[13] SCHAEFER P.: 
Sum-preserving rearrangements of infinite series. Amer. Math. Monthly 88 (1981), 33-40. 
MR 0619416 | 
Zbl 0455.40007[14] STOUT Q. F.: 
On Levi's duality between permutations and convergent series. J. London Math. Soc. (2) 34 (1986), 67-80. 
MR 0859149 | 
Zbl 0633.40004[15] TKADLEC J.: 
Construction of some non-a-porous sets of real line. Real. Anal. Exchange 9 (1983-84), 473-482. 
MR 0766073[16] ZAJÍČEK L.: 
Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$. Časopis Pěst. Mat. 101 (1976), 350-359. 
MR 0457731 | 
Zbl 0341.30026