| Title:
|
Almost every bipartite graph has not two vertices of minimum degree (English) |
| Author:
|
Bukor, Jozef |
| Language:
|
English |
| Journal:
|
Mathematica Slovaca |
| ISSN:
|
0139-9918 |
| Volume:
|
43 |
| Issue:
|
2 |
| Year:
|
1993 |
| Pages:
|
113-117 |
| . |
| Category:
|
math |
| . |
| MSC:
|
05C35 |
| MSC:
|
05C80 |
| idZBL:
|
Zbl 0795.05126 |
| idMR:
|
MR1274596 |
| . |
| Date available:
|
2009-09-25T10:46:25Z |
| Last updated:
|
2012-08-01 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/132341 |
| . |
| Reference:
|
[1] BOLLOBÁS B.: Degree sequences of random graphs.Discrete Math. 33 (1981), 1-19. Zbl 0447.05038, MR 0597223 |
| Reference:
|
[2] BOLLOBÁS B.: Vertices of given degree in a random graph.J. Graph Theory 6 (1982), 147-155. Zbl 0499.05056, MR 0655200 |
| Reference:
|
[3] ERDÖS P., WILSON R. J.: On the chromatic index of almost all graphs.J. Combin. Theory Ser. B 23 (1977), 255-257. Zbl 0378.05032, MR 0463022 |
| Reference:
|
[4] FELLER W.: An Introduction to Probability Theory and its Applications Vol 1.Wiley, New York, 1968. MR 0228020 |
| Reference:
|
[5] PALKA Z.: Extreme degrees in random graphs.J. Graph Theory 11 (1987), 121-134. Zbl 0672.05069, MR 0889344 |
| . |