[1] Banakh T.: 
$AE(0)$--spaces and regular operators extending $($averaging$)$ pseudometrics. Bull. Polish Acad. Sci. Math. 42 (1994), 3 197--206. 
MR 1811849 | 
Zbl 0827.54010 
[2] Banakh T., Bessaga C.: 
On linear operators extending $[$pseudo$]$metrics. Bull. Polish Acad. Sci. Math. 48 (2000), 1 35--49. 
MR 1751152 | 
Zbl 0948.54021 
[3] Banakh T., Brodskiy N., Stasyuk I., Tymchatyn E.D.: 
On continuous extension of uniformly continuous functions and metrics. submitted to Colloq. Math. 
MR 2520139 
[4] Banakh T., Tymchatyn E.D., Zarichnyi M.: Extensions of metrics: survey of results. in preparation.
[5] Bessaga C.: 
On linear operators and functors extending pseudometrics. Fund. Math. 142 (1993), 2 101--122. 
MR 1211761 | 
Zbl 0847.54033 
[6] Čoban M.M.: 
Multivalued mappings and Borel sets. Dokl. Akad. Nauk SSSR 182 (1968), 1175--1178. 
MR 0236892 
[10] Khrennikov A.Yu., Nilsson M.: 
$p$-Adic Deterministic and Random Dynamics. Kluwer Academic, Dordrecht-Boston-London, 2004, 270 pp. 
MR 2105195 
[12] Luukkainen J., Movahedi-Lankarani H.: 
Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fund. Math. 144 (1994), 181--193. 
MR 1273695 | 
Zbl 0807.54025 
[13] van Mill J., Pelant J., Pol R.: 
Selections that characterize topological completeness. Fund. Math. 149 (1996), 127--141. 
MR 1376668 | 
Zbl 0861.54016 
[14] Stasyuk I.: 
Operators of simultaneous extensions partial ultrametrics. Math. Methods and Phys.-Mech. Fields 49 (2006), 2 27--32 (Ukrainian). 
MR 2259425 
[15] Stasyuk I., Tymchatyn E.D.: A note on uniformly continuous selections of multivalued maps. submitted to Topology Appl.
[17] Tymchatyn E.D., Zarichnyi M.: 
A note on operators extending partial ultrametrics. Comment. Math. Univ. Carolin. 46 (2005), 3 515--524. 
MR 2174529 | 
Zbl 1121.54045