Previous |  Up |  Next


Title: On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb R^m \times (0, + \infty )$ (English)
Author: Bonafede, Salvatore
Author: Nicolosi, Francesco
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 2
Year: 2004
Pages: 113-123
Summary lang: English
Category: math
Summary: We study the asymptotic behaviour near infinity of the weak solutions of the Cauchy-problem. (English)
Keyword: weak subsolution
Keyword: degenerate equation
Keyword: unbounded domain
Keyword: asymptotic behaviour
MSC: 35B40
MSC: 35K55
MSC: 35K65
idZBL: Zbl 1115.35071
idMR: MR2073508
DOI: 10.21136/MB.2004.133902
Date available: 2009-09-24T22:13:19Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] Adams R. A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] Bonafede S., Nicolosi F.: Control of essential supremum of solutions of quasilinear degenerate parabolic equations.Appl. Anal. 79 (2001), 405–418. MR 1880951, 10.1080/00036810108840970
Reference: [3] Bonafede S., Nicolosi F.: Quasilinear degenerate parabolic equations in unbounded domains.Comm. Appl. Anal. 8 (2004), 109–124. MR 2036607
Reference: [4] Guglielmino F., Nicolosi F.: Existence results for boundary value problems for a class of quasilinear parabolic equations.Actual problems in analysis and mathematical physics. Proceedings of the interntional symposium, Taormina, Italy, 1992, Dipartimento di Matematica, Università di Roma, pp. 95–117. (Italian)
Reference: [5] Kondratiev V., Nicolosi F.: On some properties of the solutions of quasilinear degenerate elliptic equations.Math. Nachr. 182 (1996), 243–260. MR 1419896, 10.1002/mana.19961820111
Reference: [6] Kondratiev V., Véron, L.: Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations.Asymptotic Anal. 14 (1997), 117–156. MR 1451209, 10.3233/ASY-1997-14202
Reference: [7] Ladyzenskaja O. A., Solonnikov V. A., Ural’tseva N. N.: Linear and quasi-linear equations of parabolic type.Translation of mathematical monographs, vol. 23, A.M.S., Providence, 1968.
Reference: [8] Lions J. L.: Sur certains équations paraboliques non linéaires.Bull. Soc. Math. Fr. 93 (1965), 155–175. MR 0194760, 10.24033/bsmf.1620
Reference: [9] Nicolosi F.: Weak solutions of boundary value problems for parabolic operators that may degenerate.Annali di Matematica 125 (1980), 135–155. MR 0605207
Reference: [10] Nicolosi F.: Boundary value problems for second-order linear degenerate parabolic operators.Le Matematiche 37 (1982), 319–327. MR 0847836
Reference: [11] Nicolosi F., Skrypnik I. V.: On existence and boundedness degenerate quasilinear parabolic equations of higher order.Dopov. Akad. Nauk. Ukr. 1 (1997), 17–21. MR 1490697
Reference: [12] Nicolosi F., Skrypnik I. V.: Hölder continuity of solutions for higher order degenerate nonlinear parabolic equations.Annali di Matematica 175 (1998), 1–27. MR 1748214, 10.1007/BF01783674


Files Size Format View
MathBohem_129-2004-2_1.pdf 320.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo