[1] G. B. Dantzig: 
Linear programming and extensions. Princeton University Press, Princeton, 1973. 
MR 1658673 
[2] H. W. Kuhn, A. W. Tucker: Linear inequalities and related systems. Princeton University Press, Princeton, 1956.
[5] L. Grygarová: 
On a calculation of an arbitrary separating hyperplane of convex polyhedral sets. Optimization 43 (1997), 93–112. 
MR 1638843 
[6] L. Grygarová: 
Separating support syperplanes for a pair of convex polyhedral sets. Optimization 43 (1997), 113–143. 
MR 1638847 
[7] L. Grygarová: 
On a supporting hyperplane for two convex polyhedral sets. Optimization 43 (1997), 235–255. 
MR 1774340 
[8] V. Klee: 
Separation and support properties of convex sets—A survey. In: A. V. Balakrishnan (ed.): Control Theory and the Calculus of Variations. Academic Press, New York, 1969. 
MR 0394357 
[9] D. G. Luenberger: 
Introduction to linear and nonlinear programming. Addison-Wesley Publishing Comp., 1973. 
Zbl 0297.90044 
[10] R. Hettich, P. Zehncke: 
Numerische Methoden der Approximation und semi-infiniten Optimierung. Teubner, Stuttgart, 1982. 
MR 0653476 
[11] R. Hettich, K. O. Kortanek: 
Semi-infinite programming, theory, methods and applications. SIAM Review 35, 380–429. 
MR 1234637 
[12] J. Nedoma: 
Linear independence and total separation of set families. Ekonomicko-matematický obzor 14 (1978). 
MR 0508972 | 
Zbl 0422.15015 
[16] W. Oettli: 
On the solution set of a linear system with inaccurate coefficients. SIAM J. Numer. Anal. 2 (1965), 115–118. 
MR 0178567 | 
Zbl 0146.13404 
[17] W. Oettli, W. Prager: 
Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6 (1964), 405–409. 
DOI 10.1007/BF01386090 | 
MR 0168106 
[18] J. Ramík: Linear programming with inexact coefficients. Res. Report, Japan Adv. Inst. Sci. Techn., Hokuriku, 1997.
[21] J. Stoer, C. Witzgall: 
Convexity and optimization in finite dimensions I. Springer, Berlin, 1970. 
MR 0286498 
[22] J. Tichatschke, R. Hettich, G. Still: 
Connections between generalized, inexact and semi-infinite linear programming. ZOR-Methods Models Oper. Res. 33 (1989), 367–382. 
MR 1030790