Previous |  Up |  Next

Article

Title: Non-singular covers over monoid rings (English)
Author: Bican, Ladislav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 1
Year: 2008
Pages: 9-17
Summary lang: English
.
Category: math
.
Summary: We shall introduce the class of strongly cancellative multiplicative monoids which contains the class of all totally ordered cancellative monoids and it is contained in the class of all cancellative monoids. If $G$ is a strongly cancellative monoid such that $hG\subseteq Gh$ for each $h\in G$ and if $R$ is a ring such that $aR\subseteq Ra$ for each $a\in R$, then the class of all non-singular left $R$-modules is a cover class if and only if the class of all non-singular left $RG$-modules is a cover class. These two conditions are also equivalent whenever we replace the strongly cancellative monoid $G$ by the totally ordered cancellative monoid or by the totally ordered group. (English)
Keyword: hereditary torsion theory
Keyword: torsion theory of finite type
Keyword: Goldie’s torsion theory
Keyword: non-singular module
Keyword: non-singular ring
Keyword: monoid ring
Keyword: precover class
Keyword: cover class
MSC: 06F05
MSC: 16D50
MSC: 16D80
MSC: 16S36
MSC: 16S90
MSC: 18E40
idZBL: Zbl 1170.16022
idMR: MR2400147
DOI: 10.21136/MB.2008.133940
.
Date available: 2009-09-24T22:33:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133940
.
Reference: [1] F. W. Anderson, K. R. Fuller: Rings and Categories of Modules.Graduate Texts in Mathematics 13, Springer, 1974. MR 1245487
Reference: [2] L. Bican: Torsionfree precovers.Contributions to General Algebra 15, Proceedings of the 66th Workshop on General Algebra, Klagenfurt 2003, Verlag Johannes Heyn, Klagenfurt, 2004, pp. 1–6. Zbl 1074.16002, MR 2080845
Reference: [3] L. Bican: Precovers and Goldie’s torsion theory.Math. Bohem. 128 (2003), 395–400. Zbl 1057.16027, MR 2032476
Reference: [4] L. Bican: On torsionfree classes which are not precover classes.(to appear). Zbl 1166.16013, MR 2411109
Reference: [5] L. Bican: Non-singular precovers over polynomial rings.Comment. Math. Univ. Carol. 47 (2006), 369–377. Zbl 1106.16032, MR 2281000
Reference: [6] L. Bican: Non-singular covers over ordered monoid rings.Math. Bohem. 131 (2006), 95–104. Zbl 1111.16029, MR 2211006
Reference: [7] L. Bican, R. El Bashir, E. Enochs: All modules have flat covers.Proc. London Math. Society 33 (2001), 385–390. MR 1832549
Reference: [8] L. Bican, B. Torrecillas: Precovers.Czech. Math. J. 53 (2003), 191–203. MR 1962008
Reference: [9] L. Bican, B. Torrecillas: On covers.J. Algebra 236 (2001), 645–650. MR 1813494, 10.1006/jabr.2000.8562
Reference: [10] L. Bican, T. Kepka, P. Němec: Rings, Modules, and Preradicals.Marcel Dekker, New York, 1982. MR 0655412
Reference: [11] J. Golan: Torsion Theories.Pitman Monographs and Surveys in Pure an Applied Mathematics 29, Longman Scientific and Technical, 1986. Zbl 0657.16017, MR 0880019
Reference: [12] S. H. Rim, M. L. Teply: On coverings of modules.Tsukuba J. Math. 24 (2000), 15–20. MR 1791327, 10.21099/tkbjm/1496164042
Reference: [13] M. L. Teply: Torsion-free covers II.Israel J. Math. 23 (1976), 132–136. Zbl 0321.16014, MR 0417245
Reference: [14] M. L. Teply: Some aspects of Goldie’s torsion theory.Pacif. J. Math. 29 (1969), 447–459. Zbl 0174.06803, MR 0244323, 10.2140/pjm.1969.29.447
Reference: [15] J. Xu: Flat Covers of Modules.Lect. Notes Math. 1634, Springer, Berlin, 1996. Zbl 0860.16002, MR 1438789
.

Files

Files Size Format View
MathBohem_133-2008-1_2.pdf 257.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo