[1] Alibert, J. J., Raymond, J. P.: 
Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 18 (1997), 235–250. 
DOI 10.1080/01630569708816758 | 
MR 1448889[3] Bayly, B. J., Levermore, C. D., Passot T.: 
Density variations in weakly compressible flows. Phys. Fluids A 4 (1992), 945–954. 
DOI 10.1063/1.858275 | 
MR 1160287[4] Frehse, J., Málek, J., Steinhauer, M.: 
An existence result for fluids with shear dependent viscosity-steady flows. Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041–3049. 
DOI 10.1016/S0362-546X(97)00392-1 | 
MR 1602949[5] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.: Buoyancy-Induced Flows and Transport. Hemisphere Publ., Washington, 1988.
[7] Kagei, Y., Růžička, M., Thäter, G.: 
Natural convection with dissipative heating. (to appear). 
MR 1796023[8] Kaplický, P., Málek, J., Stará, J.: $C^{1,\alpha }$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem. Zapisky nauchnych seminarov POMI (Sankt Peterburg) 259 (1999), 89–121.
[9] Landau, L. D., Lifshitz, E. M.: 
Fluid Mechanics. Pergamon Press, London, 1959. 
MR 0108121[10] Lions, J. L.: 
Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris, 1969. 
MR 0259693 | 
Zbl 0189.40603[11] Lions, J. L., Magenes, E.: Problèmes aux limites non homogènes. Dunod, Paris, 1968.
[12] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: 
Weak and Measure-Valued Solutions to the Evolutionary PDE’s. Chapman & Hall, London, 1996. 
MR 1409366[13] Málek, J., Růžička, M., Thäter, G.: 
Fractal dimension, attractors and Boussinesq approximation in three dimensions. Act. Appl. Math. 37 (1994), 83–98. 
DOI 10.1007/BF00995132[14] Moseenkov, V. B.: 
Kachestvenyje metody issledovaniya zadach konvekciĭ slabo szhimaemoĭ zhidkosti. Inst. Mat. NAN Ukraïni, Kiïv, 1998. 
MR 1742952[15] Nečas, J.: Les méthodes directes dans la théorie des équations elliptiques. Academia, Prague, 1967.
[16] Nečas, J., Roubíček, T.: Buoyancy-driven viscous flow with $L^1$-data. (to appear).
[17] Rabinowitz, P.: 
Existence and nonuniqueness of rectangular solutions of the Bénard problems. Arch. Rational Mech. Anal. 29 (1968), 32–57. 
DOI 10.1007/BF00256457 | 
MR 0233557[19] Rodriguez, J. F.: 
A steady-state Boussinesq-Stefan problem with continuous extraction. Annali Mat. Pura Appl. IV 144 (1986), 203–218. 
MR 0870877[20] Rodriguez, J. F., Urbano, J. M.: 
On a three-dimensional convective Stefan problem for a non-Newtonian fluid. Nonlinear Applied Analysis, A. Sequiera et al. (eds.), Plenum Press, 1999, pp. 457–468. 
MR 1727466[21] Roubíček, T.: Nonlinear heat equation with $L^1$-data. Nonlinear Diff. Eq. Appl. 5 (1998), 517–527.
[23] Turcotte, D. L., Hsui, A. T., Torrance, K. E., Schubert, G.: 
Influence of viscous dissipation on Bénard convection. J. Fluid Mech. 64 (1974), 369–374. 
DOI 10.1017/S0022112074002448