| Title:
             | 
Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component (English) | 
| Author:
             | 
Neustupa, Jiří | 
| Author:
             | 
Pokorný, Milan | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Bohemica | 
| ISSN:
             | 
0862-7959 (print) | 
| ISSN:
             | 
2464-7136 (online) | 
| Volume:
             | 
126 | 
| Issue:
             | 
2 | 
| Year:
             | 
2001 | 
| Pages:
             | 
469-481 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We study axisymmetric solutions to the Navier-Stokes equations in the whole three-dimensional space. We find conditions on the radial and angular components of the velocity field which are sufficient for proving the regularity of weak solutions. (English) | 
| Keyword:
             | 
axisymmetric flow | 
| Keyword:
             | 
Navier-Stokes equations | 
| Keyword:
             | 
regularity of systems of PDE’s | 
| MSC:
             | 
35B65 | 
| MSC:
             | 
35D10 | 
| MSC:
             | 
35J35 | 
| MSC:
             | 
35Q30 | 
| MSC:
             | 
35Q35 | 
| MSC:
             | 
76D05 | 
| idZBL:
             | 
Zbl 0981.35046 | 
| idMR:
             | 
MR1844284 | 
| DOI:
             | 
10.21136/MB.2001.134015 | 
| . | 
| Date available:
             | 
2009-09-24T21:52:54Z | 
| Last updated:
             | 
2020-07-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/134015 | 
| . | 
| Reference:
             | 
[1] Galdi G. P.: An Introduction to the Navier-Stokes Initial Boundary Value Problem.Birhäuser Verlag, Topics in Mathematical Fluid Mechanics, Galdi G. P., Heywood J. G., Rannacher R. (eds.), to appear. Zbl 1108.35133, MR 1798753 | 
| Reference:
             | 
[2] Giga Y.: Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations.J. of Diff. Equations 61 (1986), 186–212. Zbl 0577.35058, MR 0833416, 10.1016/0022-0396(86)90096-3 | 
| Reference:
             | 
[3] Kozono H.: Uniqueness and regularity of weak solutions to the Navier-Stokes equations.Lecture Notes Num. Appl. Anal vol. 16, 1998, pp. 161–208. Zbl 0941.35065, MR 1616331 | 
| Reference:
             | 
[4] Kozono H., Sohr H.: Remark on uniqueness of weak solutions to the Navier-Stokes equations.Analysis 16 (1996), 255–271. MR 1403221, 10.1524/anly.1996.16.3.255 | 
| Reference:
             | 
[5] Ladyzhenskaya O. A.: On the unique global solvability of the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry.Zap. Nauch. Sem. LOMI 7 (1968), 155–177. (Russian) MR 0241833 | 
| Reference:
             | 
[6] Leonardi S., Málek J., Nečas J., Pokorný M.: On axially symmetric flows in ${\mathbb{R}}^3$.Z. Anal. Anwend. 18 (1999), 639–649. MR 1718156, 10.4171/ZAA/903 | 
| Reference:
             | 
[7] Leray J.: Sur le mouvements d’un liquide visqueux emplissant l’espace.Acta Math. 63 (1934), 193–248. MR 1555394, 10.1007/BF02547354 | 
| Reference:
             | 
[8] Neustupa J., Novotný A., Penel P.: A remark to the interior regularity of a suitable weak solution to the Navier-Stokes equation.Preprint University of Toulon-Var (1999). | 
| Reference:
             | 
[9] Neustupa J., Penel P.: Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component.Plenum Press, Nonlinear Applied Analysis, A. Sequeira, H. Beirao da Veiga, J. Videman (eds.), 1999, pp. 391–402. MR 1727461 | 
| Reference:
             | 
[10] Nirenberg L.: On elliptic partial differential equations.Ann. Scuola Norm. 13 (1959), 115–162. Zbl 0088.07601, MR 0109940 | 
| Reference:
             | 
[11] Prodi G.: Un teorema di unicità per el equazioni di Navier-Stokes.Ann. Mat. Pura Appl. 48 (1959), 173–182. MR 0126088 | 
| Reference:
             | 
[12] Serrin J.: The initial value problem for the Navier-Stokes equations.University of Wisconsin Press, Nonlinear Problems, R. E. Langer (ed.), 1963, pp. 69–98. Zbl 0115.08502, MR 0150444 | 
| Reference:
             | 
[13] Sohr H., von Wahl W.: On the singular set and the uniqueness of weak solutions of the Navier-Stokes equations.Manuscripta Math. 49 (1984), 27–59. MR 0762786, 10.1007/BF01174870 | 
| Reference:
             | 
[14] Uchovskii M. R., Yudovich B. I.: Axially symmetric flows of an ideal and viscous fluid.J. Appl. Math. Mech. 32 (1968), 52–61. MR 0239293, 10.1016/0021-8928(68)90147-0 | 
| . |