Previous |  Up |  Next


Title: Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component (English)
Author: Neustupa, Jiří
Author: Pokorný, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 469-481
Summary lang: English
Category: math
Summary: We study axisymmetric solutions to the Navier-Stokes equations in the whole three-dimensional space. We find conditions on the radial and angular components of the velocity field which are sufficient for proving the regularity of weak solutions. (English)
Keyword: axisymmetric flow
Keyword: Navier-Stokes equations
Keyword: regularity of systems of PDE’s
MSC: 35B65
MSC: 35D10
MSC: 35J35
MSC: 35Q30
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 0981.35046
idMR: MR1844284
DOI: 10.21136/MB.2001.134015
Date available: 2009-09-24T21:52:54Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] Galdi G. P.: An Introduction to the Navier-Stokes Initial Boundary Value Problem.Birhäuser Verlag, Topics in Mathematical Fluid Mechanics, Galdi G. P., Heywood J. G., Rannacher R. (eds.), to appear. Zbl 1108.35133, MR 1798753
Reference: [2] Giga Y.: Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations.J. of Diff. Equations 61 (1986), 186–212. Zbl 0577.35058, MR 0833416, 10.1016/0022-0396(86)90096-3
Reference: [3] Kozono H.: Uniqueness and regularity of weak solutions to the Navier-Stokes equations.Lecture Notes Num. Appl. Anal vol. 16, 1998, pp. 161–208. Zbl 0941.35065, MR 1616331
Reference: [4] Kozono H., Sohr H.: Remark on uniqueness of weak solutions to the Navier-Stokes equations.Analysis 16 (1996), 255–271. MR 1403221, 10.1524/anly.1996.16.3.255
Reference: [5] Ladyzhenskaya O. A.: On the unique global solvability of the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry.Zap. Nauch. Sem. LOMI 7 (1968), 155–177. (Russian) MR 0241833
Reference: [6] Leonardi S., Málek J., Nečas J., Pokorný M.: On axially symmetric flows in ${\mathbb{R}}^3$.Z. Anal. Anwend. 18 (1999), 639–649. MR 1718156, 10.4171/ZAA/903
Reference: [7] Leray J.: Sur le mouvements d’un liquide visqueux emplissant l’espace.Acta Math. 63 (1934), 193–248. MR 1555394, 10.1007/BF02547354
Reference: [8] Neustupa J., Novotný A., Penel P.: A remark to the interior regularity of a suitable weak solution to the Navier-Stokes equation.Preprint University of Toulon-Var (1999).
Reference: [9] Neustupa J., Penel P.: Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component.Plenum Press, Nonlinear Applied Analysis, A. Sequeira, H. Beirao da Veiga, J. Videman (eds.), 1999, pp. 391–402. MR 1727461
Reference: [10] Nirenberg L.: On elliptic partial differential equations.Ann. Scuola Norm. 13 (1959), 115–162. Zbl 0088.07601, MR 0109940
Reference: [11] Prodi G.: Un teorema di unicità per el equazioni di Navier-Stokes.Ann. Mat. Pura Appl. 48 (1959), 173–182. MR 0126088
Reference: [12] Serrin J.: The initial value problem for the Navier-Stokes equations.University of Wisconsin Press, Nonlinear Problems, R. E. Langer (ed.), 1963, pp. 69–98. Zbl 0115.08502, MR 0150444
Reference: [13] Sohr H., von Wahl W.: On the singular set and the uniqueness of weak solutions of the Navier-Stokes equations.Manuscripta Math. 49 (1984), 27–59. MR 0762786, 10.1007/BF01174870
Reference: [14] Uchovskii M. R., Yudovich B. I.: Axially symmetric flows of an ideal and viscous fluid.J. Appl. Math. Mech. 32 (1968), 52–61. MR 0239293, 10.1016/0021-8928(68)90147-0


Files Size Format View
MathBohem_126-2001-2_19.pdf 390.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo