Previous |  Up |  Next

# Article

Keywords:
double layer potential; Neumann’s operator of the arithmetical mean; essential norm
Summary:
Let $K\subset \mathbb{R}^m$ ($m\ge 2$) be a compact set; assume that each ball centered on the boundary $B$ of $K$ meets $K$ in a set of positive Lebesgue measure. Let ${C}_0^{(1)}$ be the class of all continuously differentiable real-valued functions with compact support in $\mathbb{R}^m$ and denote by $\sigma _m$ the area of the unit sphere in $\mathbb{R}^m$. With each $\varphi \in {C}_0^{(1)}$ we associate the function $W_K\varphi (z)={1\over \sigma _m}\underset{\mathbb{R}^m \setminus K}{\rightarrow }\int \mathop {\mathrm grad}\nolimits \varphi (x)\cdot {z-x\over |z-x|^m}\ x$ of the variable $z\in K$ (which is continuous in $K$ and harmonic in $K\setminus B$). $W_K\varphi$ depends only on the restriction $\varphi |_B$ of $\varphi$ to the boundary $B$ of $K$. This gives rise to a linear operator $W_K$ acting from the space ${C}^{(1)}(B)=\lbrace \varphi |_B; \varphi \in {C}_0^{(1)}\rbrace$ to the space ${C}(B)$ of all continuous functions on $B$. The operator ${T}_K$ sending each $f\in {C}^{(1)}(B)$ to ${T}_Kf=2W_Kf-f \in {C}(B)$ is called the Neumann operator of the arithmetical mean; it plays a significant role in connection with boundary value problems for harmonic functions. If $p$ is a norm on ${C}(B)\supset {C}^{(1)}(B)$ inducing the topology of uniform convergence and $G$ is the space of all compact linear operators acting on ${C}(B)$, then the associated $p$-essential norm of ${T}_K$ is given by $\omega _p {T}_K=\underset{Q\in {G}}{\rightarrow }\inf \sup \bigl \lbrace p[({T}_K-Q)f]; \ f\in {C}^{(1)}(B), \ p(f)\le 1\bigr \rbrace .$ In the present paper estimates (from above and from below) of $\omega _p {T}_K$ are obtained resulting in precise evaluation of $\omega _p {T}_K$ in geometric terms connected only with $K$.
References:
 T. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. Pěst. Mat. 113 (1988), 387–402. MR 0981880
 M. Balavadze, I. Kiguradze, V. Kokilashvili (eds.): Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili. Tbilisi, 1991.
 Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
 M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences. Praha, 1988. (Slovak)
 H. Federer: Geometric Measure Theory. Springer, Berlin, 1969. MR 0257325 | Zbl 0176.00801
 H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44–76. DOI 10.1090/S0002-9947-1945-0013786-6 | MR 0013786 | Zbl 0060.14102
 I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10 (1960), 91–95. (Russian)
 J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. DOI 10.1090/S0002-9947-1966-0209503-0 | MR 0209503
 J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer, Berlin, 1980. MR 0590244
 J. Král: The Fredholm-Radon method in potential theory. Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili, Tbilisi, 1991, pp. 390–397. MR 1379845
 J. Král, D. Medková: Angular limits of double layer potentials. Czechoslovak Math. J. 45 (1995), 267–291. MR 1331464
 J. Král, D. Medková: Essential norms of a potential theoretic boundary integral operator in $L^1$. Math. Bohem. 123 (1998), 419–436. MR 1667114
 J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm -Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308. MR 0854323
 J. Lukeš, J. Malý: Measure and Integral. Matfyzpress, 1994. MR 2316454
 V. G Maz’ya: Boundary Integral Equations. Encyclopaedia of Mathematical Sciences vol. 27, Analysis IV. Springer, 1991. DOI 10.1007/978-3-642-58175-5_2
 L. C. Young: A theory of boundary values. Proc. London Math. Soc. 14A (1965), 300–314. MR 0180891 | Zbl 0147.07802
 W. P. Ziemer: Weakly Differentiable Functions. Springer, 1989. MR 1014685 | Zbl 0692.46022