Previous |  Up |  Next

Article

Title: Colouring polytopic partitions in $\mathbb{R}^d$ (English)
Author: Křížek, Michal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 251-264
Summary lang: English
.
Category: math
.
Summary: We consider face-to-face partitions of bounded polytopes into convex polytopes in $\mathbb{R}^d$ for arbitrary $d\ge 1$ and examine their colourability. In particular, we prove that the chromatic number of any simplicial partition does not exceed $d+1$. Partitions of polyhedra in $\mathbb{R}^3$ into pentahedra and hexahedra are $5$- and $6$-colourable, respectively. We show that the above numbers are attainable, i.e., in general, they cannot be reduced. (English)
Keyword: colouring multidimensional maps
Keyword: four colour theorem
Keyword: chromatic number
Keyword: tetrahedralization
Keyword: convex polytopes
Keyword: finite element methods
Keyword: domain decomposition methods
Keyword: parallel programming
Keyword: combinatorial geometry
Keyword: six colour conjecture
MSC: 05C15
MSC: 51M20
MSC: 65N30
idZBL: Zbl 1003.05042
idMR: MR1981530
DOI: 10.21136/MB.2002.134161
.
Date available: 2012-10-05T12:59:47Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134161
.
Reference: [1] K. Appel, W. Haken: Every planar map is four colorable.Bull. Amer. Math. Soc. 82 (1976), 711–712. MR 0424602, 10.1090/S0002-9904-1976-14122-5
Reference: [2] K. Appel, W. Haken: Every planar map is four colorable. I. Discharging.Illinois J. Math. 21 (1977), 429–490. MR 0543792, 10.1215/ijm/1256049011
Reference: [3] K. Appel, W. Haken, J. Koch: Every planar map is four colorable. II. Reducibility.Illinois J. Math. 21 (1977), 491–567. MR 0543793, 10.1215/ijm/1256049012
Reference: [4] R. E. Bank: PLTMG: A Software Package for Solving Partial Differential Equations: Users’ Guide 7.0.SIAM, Philadelphia, 1994. MR 1262123
Reference: [5] D. W. Barnette: Coloring polyhedral manifolds.Proc. Conf. Discrete Geometry and Convexity, Ann. N. Y. Acad. Sci. 440 (1985), 192–195. Zbl 0571.05018, MR 0809206
Reference: [6] J. H. Brandts: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Numer. Math. 68 (1994), 311–324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064
Reference: [7] R. Fritsch, G. Fritsch: The Four-Color Theorem.Springer, Berlin, 1998. MR 1633950
Reference: [8] J. L. Gross, T. W. Tucker: Topological Graph Theory.John Wiley & Sons, New York, 1987. MR 0898434
Reference: [9] B. Grünbaum: Grötzch’s theorem on 3-coloring.Michigan Math. J. 10 (1963), 303–310. MR 0154274, 10.1307/mmj/1028998916
Reference: [10] F. Harary: Graph Theory.Addison-Wesley, London, 1972. MR 0256911
Reference: [11] P. J. Heawood: Map colour theorems.Quart. J. Math. 24 (1890), 332–338.
Reference: [12] M. Křížek: An equilibrium finite element method in three-dimensional elasticity.Apl. Mat. 27 (1982), 46–75. MR 0640139
Reference: [13] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990. MR 1066462
Reference: [14] M. Křížek, P. Neittaanmäki, R. Stenberg (eds.): Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates.Proc. Conf., Jyväskylä, 1996, LN in Pure and Appl. Math. vol. 196, Marcel Dekker, New York, 1998. MR 1602809
Reference: [15] K. Kuratowski: Sur le problème des courbes gauches en topologie.Fund. Math. 15 (1930), 217–283.
Reference: [16] L. Lovász: Three short proofs in graph theory.J. Combin. Theory Ser. B 19 (1975), 269–271. MR 0396344, 10.1016/0095-8956(75)90089-1
Reference: [17] J. Mayer: Le problème des régions voisines sur les surfaces closes orientables.J. Comb. Theory Ser. B 6 (1969), 177–195. Zbl 0182.26601, MR 0234863, 10.1016/S0021-9800(69)80118-3
Reference: [18] G. Ringel: Map Color Theorem.Springer, Berlin, 1974. Zbl 0287.05102, MR 0349461
Reference: [19] G. Ringel, J. W. T. Youngs: Solution of the Heawood map-coloring problem.Proc. Natl. Acad. Sci. USA 60 (1968), 438–445. MR 0228378, 10.1073/pnas.60.2.438
Reference: [20] N. Robertson, D. P. Sanders, P. D. Seymour, R. Thomas: The four color theorem.J. Combin. Theory Ser. B 70 (1997), 2–44. MR 1441258, 10.1006/jctb.1997.1750
Reference: [21] F. Rubin: An improved algorithm for testing the planarity of a graph.IEEE Trans. Comput. c-24 (1975), 113–121. Zbl 0297.68030, MR 0414407
Reference: [22] E. Schutle: Tilings.Handbook of Convex Geometry (Gruber P. M. , Will, J. M., eds.), Vol. B, North-Holland, Amsterdam, 1993. MR 1242973
Reference: [23] O. Shishkina: Three-colour parallel multilevel preconditioner.Syst. Anal. Modelling Simulation 24 (1996), 255–261. Zbl 0935.65045
Reference: [24] W. T. Tutte: Graph Theory.Addison-Wesley, London, 1984. Zbl 0554.05001, MR 0746795
.

Files

Files Size Format View
MathBohem_127-2002-2_13.pdf 458.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo