[1] Ph. Angot, V. Dolejší, M. Feistauer, J. Felcman: 
Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43 (1998), 263–310. 
DOI 10.1023/A:1023217905340 | 
MR 1627989[2] F. Bassi, S. Rebay: 
A high order discontinuous Galerkin method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997), 267–279. 
DOI 10.1006/jcph.1996.5572 | 
MR 1433934[3] B. Cockburn: 
Discontinuous Galerkin methods for convection dominated problems. High-Order Methods for Computational Physics, T. J. Barth, H. Deconinck (eds.), Lecture Notes in Computational Science and Engineering 9, Springer, Berlin, 1999, pp. 69–224. 
MR 1712278 | 
Zbl 0937.76049[4] B. Cockburn, G. E. Karniadakis, C.-W. Shu: 
Discontinuous Galerkin Methods. Lect. Notes Comput. Sci. Eng. 11., Springer, Berlin, 2000. 
MR 1842160[5] V. Dolejší: 
Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165–178. 
DOI 10.1007/s007910050015[6] V. Dolejší, M. Feistauer, C. Schwab: 
A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems. Calcolo. Preprint, Forschungsinstitut für Mathematik ETH Zürich, Januar 2001 (to appear). 
MR 1901200[7] V. Dolejší, M. Feistauer, C. Schwab: 
On some aspects of the discontinuous Galerkin finite element method for conservation laws. Mathematics and Computers in Simulation. The Preprint Series of the School of Mathematics, Charles University Prague, No. MATH-KNM-2001/5, 2001 (to appear). 
MR 1984135[8] M. Feistauer: 
Mathematical Methods in Fluid Dynamics. Longman Scientific & Technical, Harlow, 1993. 
Zbl 0819.76001[9] M. Feistauer: 
Numerical methods for compressible flow. Mathematical Fluid Mechanics. Recent Results and Open Questions, J. Neustupa, P. Penel (eds.), Birkhäuser, Basel, 2001, pp. 105–142. 
MR 1865051 | 
Zbl 1036.76035[10] M. Feistauer, J. Felcman: Theory and applications of numerical schemes for nonlinear convection-diffusion problems and compressible Navier-Stokes equations. The Mathematics of Finite Elements and Applications, J. R. Whiteman (ed.), Highlights, 1996, Wiley, Chichester, 1997, pp. 175–194.
[11] M. Feistauer, J. Felcman, V. Dolejší: Numerical solution of compressible flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297–300.
[13] M. Feistauer, J. Felcman, M. Lukáčová, G. Warnecke: 
Error estimates for a combined finite volume—finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528–1548. 
DOI 10.1137/S0036142997314695 | 
MR 1706727[15] J. Felcman: 
On a 3D adaptation for compressible flow. Proceedings of the Conf. Finite Element Methods for Three-Dimensional Problems, Jyväskylä, June 27–July 1, 2000 (to appear). 
Zbl 0996.76060[16] J. Fořt, J. Halama, A. Jirásek, M. Kladrubský, K. Kozel: Numerical solution of several 2D and 3D internal and external flow problems. Numerical Modelling in Continuum Mechanics, M. Feistauer, R. Rannacher, K. Kozel (eds.), Matfyzpress, Praha, 1997, pp. 283–291.
[17] R. Hartmann, P. Houston: Adaptive discontinuous Galerkin finite element methods for nonlinear conservation laws. Preprint 2001–20, Mai 2001, SFB 359, Universität Heidelberg.
[18] J. T. Oden, I. Babuška, C. E. Baumann: 
A discontinuous $hp$ finite element method for diffusion problems. J. Comput. Phys. 146 (1998), 491–519. 
DOI 10.1006/jcph.1998.6032 | 
MR 1654911[19] S. P. Spekreijse: 
Multigrid Solution of the Steady Euler Equations. Centrum voor Wiskunde en Informatica, Amsterdam, 1987. 
MR 0942891