[1] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov: Boundary Value Problems of Mechanics of Non-Homogeneous Fluids. Novosibirsk, 1983. (Russian)
[2] R. J. DiPerna, P.-L. Lions: 
Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547. 
DOI 10.1007/BF01393835 | 
MR 1022305[3] B. Ducomet, E. Feireisl, H. Petzeltová, I. Straškraba: 
Global in time weak solutions for compressible barotropic self-gravitating fluids. Adv. Appl. Math. Submitted (2001). 
MR 1841897[4] E. Feireisl: 
The dynamical systems approach to the Navier-Stokes equations of compressible fluid. Advances in Mathematical Fluid Mechanics, J. Málek, J. Nečas, M. Rokyta (eds.), Springer, Berlin, 2000. 
MR 1863209[5] E. Feireisl: 
On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001), 83–98. 
MR 1825374 | 
Zbl 1115.35096[6] E. Feireisl, A. Novotný, H. Petzeltová: 
On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid. Math. Meth. Appl. Sci (to appear). 
MR 1918742[7] E. Feireisl, A. Novotný, H. Petzeltová: 
On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Dynamics 3 (2001), 358–392. 
MR 1867887[8] E. Feireisl, H. Petzeltová: 
On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equations 25 (2000), 755–767. 
DOI 10.1080/03605300008821530 | 
MR 1748351[9] P.-L. Lions: 
Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models. Oxford Science Publication, Oxford, 1998. 
MR 1637634[10] P.-L. Lions: 
Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet. C. R. Acad. Sci. Paris, Sér I. 328 (1999), 659–662. 
MR 1680813