Previous |  Up |  Next

Article

Keywords:
Hamiltonian system; period function; Picard-Fuchs equations
Summary:
The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.
References:
[1] Bogdanov, R. I.: Bifurcation of limit cycle of a family of plane vector fields. Sel. Math. Sov. 1 (1981), 373–387.
[2] Brunovský, P., Chow, S.-N.: Generic properties of stationary state solutions of reaction-diffusion equation. J. Differ. Equations 53 (1984), 1–23. DOI 10.1016/0022-0396(84)90022-6 | MR 0747403
[3] Chicone, C.: The monotonicity of the period function for planar hamiltonian vector fields. J. Differ. Equations 69 (1987), 310–321. DOI 10.1016/0022-0396(87)90122-7 | MR 0903390 | Zbl 0622.34033
[4] Chow, S.-N., Sanders, J. A.: On the number of critical points of the period. J. Differ. Equations 64 (1986), 51–66. DOI 10.1016/0022-0396(86)90071-9 | MR 0849664
[5] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory. Springer, New York, 1996. MR 0660633
[6] Chow, S.-N., Wang, D.: On the monotonicity of the period function of some second order equations. Časopis Pěst. Mat. 111 (1986), 14–25. MR 0833153
[7] Cushman, R., Sanders, J. A: A codimension two bifurcation with a third order Picard-Fuchs equation. J. Differ. Equations 59 (1985), 243–256. DOI 10.1016/0022-0396(85)90156-1 | MR 0804890
[8] Guckenheimer, J., Holmes, P. J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York, 1983. MR 0709768
[9] Jarník, V.: Integral Calculus II. Academia, Praha, 1976. (Czech)
[10] Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin, 1958. MR 0145709 | Zbl 0080.17409
[11] Lichardová, H.: Limit cycles in the equation of whirling pendulum with autonomous perturbation. Appl. Math. 44 (1999), 271–288. DOI 10.1023/A:1023080513150 | MR 1698769
[12] Qiu, S.-L., Vamanamurthy, M. K.: Sharp estimates for complete elliptic integrals. SIAM J. Math. Anal. 27 (1996), 823–834. DOI 10.1137/0527044 | MR 1382835
[13] Sanders, J. A., Cushman, R.: Limit cycles in the Josephson equation. SIAM J. Math. Anal. 17 (1986), 495–511. DOI 10.1137/0517039 | MR 0838238
[14] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge at the University Press, Cambridge, 1927. MR 1424469
[15] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York, 1990. MR 1056699 | Zbl 0701.58001
Partner of
EuDML logo