[1] Burton, D. M.: Elementary Number Theory, fourth edition. McGraw-Hill, New York, 1998.
[2] Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite. Math. Comp. (submitted).
[3] Křížek, M., Chleboun, J.: 
A note on factorization of the Fermat numbers and their factors of the form $3h2^n+1$. Math. Bohem. 119 (1994), 437–445. 
MR 1316595[4] Křížek, M., Luca, F., Somer, L.: 
17 Lectures on Fermat Numbers. From Number Theory to Geometry. Springer, New York, 2001. 
MR 1866957[6] Niven, I., Zuckerman, H. S., Montgomery, H. L.: 
An Introduction to the Theory of Numbers, fifth edition. John Wiley and Sons, New York, 1991. 
MR 1083765[7] Szalay, L.: 
A discrete iteration in number theory. BDTF Tud. Közl. VIII. Természettudományok 3., Szombathely (1992), 71–91. (Hungarian) 
Zbl 0801.11011[8] Wantzel, P. L.: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas. J. Math. 2 (1837), 366–372.