[3] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.
[4] D. Kurepa: 
Partitive sets and ordered chains. Rad. Jug. Akad. Znan. Umjet, Odjel Mat. Fiz. Techn. Nauke 6 (1957), 197–235. 
MR 0097328 | 
Zbl 0147.26301[5] V. M. Micheev: 
On sets containing the greatest number of pairwise incomparable Boole vectors. Probl. Kib. 2 (1959), 69–71. (Russian) 
MR 0123498[6] J. Novák: 
On some ordered continua of power $2^{\aleph _0}$ containing a dense subset of power $\aleph _1$. Czechoslovak Math. J. 1 (1951), 63–79. 
MR 0049262[7] J. Novák: 
On some characteristics of an ordered continuum. Czechoslovak Math. J. 2 (1952), 369–386. (Russian) 
MR 0062197[8] V. Novák: 
On the pseudodimension of ordered sets. Czechoslovak Math. J. 13 (1963), 587–598. 
MR 0180507[11] M. Novotný: On a certain characteristic of an ordered continuum. Czechoslovak Math. J. 3 (1953), 75–82. (Russian)
[12] M. Novotný: 
On representation of partially ordered sets by means of sequences of 0’s and 1’s. Čas. pěst. mat. 78 (1953), 61–64. (Czech) 
MR 0079066[13] M. Novotný: 
Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. MU Brno 389 (1955), 451–458. 
MR 0082958[14] J. Schmidt: 
Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. 7 (1956), 241–249. 
DOI 10.1007/BF01900297 | 
MR 0084484[15] E. Sperner: 
Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 (1928), 554–558. 
MR 1544925