Previous |  Up |  Next


elliptic boundary value problems; mixed finite element methods; adaptive multilevel techniques
We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a posteriori error estimators which can be derived by a defect correction in higher order ansatz spaces or by taking advantage of superconvergence results. The performance of the algorithms is illustrated by several numerical examples.
[LIT1] D.N. Arnold, F. Brezzi: Mixed and nonconforming finite element methods: implementation, post-processing and error estimates. $ M^2AN $ Math. Modelling Numer. Anal. 19, 7–35 (1985). DOI 10.1051/m2an/1985190100071 | MR 0813687
[LIT2] I. Babuska, W.C. Rheinboldt: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978). DOI 10.1137/0715049 | MR 0483395
[LIT3] I. Babuska, W.C. Rheinboldt: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978). DOI 10.1002/nme.1620121010
[LIT4] R.E. Bank: PLTMG—A Software Package for Solving Elliptic Partial Differential Equations. User’s Guide 6.0. SIAM, Philadelphia, 1990. MR 1052151
[LIT5] R.E. Bank, A.H. Sherman, A. Weiser: Refinement algorithm and data structures for regular local mesh refinement. Scientific Computing, R. Stepleman et al. (eds.), IMACS North-Holland, Amsterdam, 1983, pp. 3–17. MR 0751598
[LIT6] R.E. Bank, A. Weiser: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 283–301 (1985). DOI 10.1090/S0025-5718-1985-0777265-X | MR 0777265
[LIT8] F. Bornemann, B. Erdmann, Kornhuber: A posteriori error estimates for elliptic problems in two and three space dimensions. Konrad-Zuse-Zentrum für Informationstechnik Berlin. Preprint SC 93–29, 1993.
[LIT7] F. Bornemann, H. Yserentant: A basic norm equivalence for the theory of multilevel methods. Numer. Math. 64, 445–476 (1993). DOI 10.1007/BF01388699 | MR 1213412
[LIT9] D. Braess, R. Verfürth: A posteriori error estimators for the Raviart-Thomas element. Ruhr-Universität Bochum, Fakultät für Mathematik, Bericht Nr. 175, 1994.
[LIT10] S. Brenner: A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method. SIAM J. Numer. Anal. 29, 647–678 (1992). DOI 10.1137/0729042 | MR 1163350 | Zbl 0759.65080
[LIT11] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods. Springer, Berlin-Heidelberg-New York, 1991. MR 1115205
[LIT12] Z. Cai, C.I. Goldstein, J. Pasciak: Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput. 14, 1072–1088 (1993). DOI 10.1137/0914065 | MR 1232176
[LIT13] L.C. Cowsar: Domain decomposition methods for nonconforming finite element spaces of Lagrange-type. Rice University, Houston. Preprint TR 93–11, 1993.
[LIT14] P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Engrg. 1, 3–35 (1989). DOI 10.1016/0899-8248(89)90018-9
[LIT15] R.E. Ewing, J. Wang: The Schwarz algorithm and multilevel decomposition iterative techniques for mixed finite element methods. Proc. 5th Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, D.F. Keyes et al. (eds.), SIAM, Philadelphia, 1992, pp. 48–55. MR 1189562
[LIT16] R.E. Ewing, J. Wang: Analysis of the Schwarz algorithm for mixed finite element methods. $ M^2AN $ Math. Modelling and Numer. Anal. 26, 739–756 (1992). DOI 10.1051/m2an/1992260607391 | MR 1183415
[LIT17] R.E. Ewing, J. Wang: Analysis of multilevel decomposition iterative methods for mixed finite element methods. $ M^2AN $ Math. Modelling and Numer. Anal. 28, 377–398 (1994). DOI 10.1051/m2an/1994280403771 | MR 1288504
[LIT18] B. Fraeijs de Veubeke: Displacement and equilibrium models in the finite element method. Stress Analysis, C. Zienkiewicz and G. Holister (eds.), John Wiley and Sons, New York, 1965.
[LIT19] R.H.W. Hoppe, B. Wohlmuth: Element-oriented and edge-oriented local error estimators for nonconforming finite elements methods. Submitted to $ M^2 AN $ Math. Modelling and Numer. Anal.
[LIT20] R.H.W. Hoppe, B. Wohlmuth: Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. Submitted to SIAM J. Numer. Anal. MR 1461801
[LIT21] R.H.W. Hoppe, B. Wohlmuth: Adaptive iterative solution of mixed finite element discretizations using multilevel subspace decompositions and a flux-oriented error estimator. In preparation.
[LIT22] P. Oswald: On a BPX-preconditioner for P1 elements. Computing 51, 125–133 (1993). DOI 10.1007/BF02243847 | MR 1248895 | Zbl 0787.65018
[LIT23] J. Roberts, J.M. Thomas: Mixed and hybrid methods. Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions (eds.), Vol.II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989. MR 1115239
[LIT24] P.S. Vassilevski, J. Wang: Multilevel iterative methods for mixed finite elements discretizations of elliptic problems. Numer. Math. 63, 503–520 (1992). DOI 10.1007/BF01385872 | MR 1189534
[LIT25] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Manuscript, 1993.
[LIT26] B. Wohlmuth, R.H.W. Hoppe: Multilevel approaches to nonconforming finite elements discretizations of linear second order elliptic boundary value problems. To appear in Journal of Computation and Information.
[LIT27] J. Xu: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992). DOI 10.1137/1034116 | MR 1193013 | Zbl 0788.65037
[LIT28] H. Yserentant: On the multi-level splitting of finite element spaces. Numer. Math. 49, 379–412 (1986). DOI 10.1007/BF01389538 | MR 0853662 | Zbl 0625.65109
[LIT29] H. Yserentant: Old and new convergence proofs for multigrid methods. Acta Numerica 1, 285–326 (1993). DOI 10.1017/S0962492900002385 | MR 1224685 | Zbl 0788.65108
[LIT30] X. Zhang: Multilevel Schwarz methods. Numer. Math. 63, 521–539 (1992). DOI 10.1007/BF01385873 | MR 1189535 | Zbl 0796.65129
Partner of
EuDML logo