[1] K. E. Brenan, S. L. Campbell, L. R. Petzold: 
Numerical Solution of Initial-Value Problems in Differential-Algebraic-Equations. North-Holand, New York, Amsterdam, London, 1989. 
MR 1101809[2] S. L. Campbell: 
Singular Systems of Differential Equations. Pitman, London, 1980. 
Zbl 0419.34007[3] S. L. Campbell: 
Singular Systems of Differential Equations II. Pitman, London, 1982. 
Zbl 0482.34008[5] P. Deuflhard, E. Hairer, J, Zugck: 
One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51 (1987), 501–516. 
DOI 10.1007/BF01400352 | 
MR 0910861[6] C. W. Gear: 
The simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory TC-18 (1971), 89–95. 
DOI 10.1109/TCT.1971.1083221[7] C. W. Gear, L. R. Petzold: 
ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21 (1984), 716–728. 
DOI 10.1137/0721048 | 
MR 0749366[8] E. Griepentrog, R. März: 
Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Verlag, Leipzig, 1986. 
MR 0881052[9] E. Hairer, Ch. Lubich, M. Roche: 
The numerical solution of differential-algebraic systems by Runge-Kutta methods. Lecture Notes in Mathematics Nr.  1409, Springer-Verlag, Berlin, Heidelberg, New York, 1989. 
MR 1027594[11] Z. Jackiewicz, M. Kwapisz: 
Convergence of waveform relaxation methods for differential algebraic systems. SIAM J. Numer. Anal., In press. 
MR 1427465[12] T. Jankowski: 
Existence, uniqueness and approximate solutions of problems with a parameter. Zesz. Nauk. Politech. Gdańsk, Mat. 16 (1993), 3–167. 
Zbl 0893.34062