MSC:
35B65,
35M05,
35R05,
49J20,
49K20,
73U05,
74B05,
80A20 | MR 1373475 | Zbl 0854.73010 | DOI: 10.21136/AM.1996.134315

Full entry |
PDF
(2.8 MB)
Feedback

heat equation; Lamé system; coupled system; viscoelasticity; optimal control; state space constraints; bounded stresses

References:

[1] O.V. Běsov, V.P. Iljin and S.M. Nikol’skij: **Integral Transformations of Functions and Imbedding Theorems**. Nauka, Moskva, 1975. (Russian)

[2] F.H. Clarke: **Optimization and Nonsmooth Analysis**. J. Wiley & Sons, New York, 1983. MR 0709590 | Zbl 0582.49001

[3] I. Ekeland and R. Temam: **Analyse convexe et problèmes variationnels**. Dunod, Paris, 1974. MR 0463993

[4] J. Jarušek: **Contact problems with bounded friction. Coercive case**. Czech. Math. J. 33 (108) (1983), 237–261. MR 0699024

[5] J. Jarušek: **On the regularity of solutions of a thermoelastic system under noncontinuous heating regimes**. Appl. Math. 35 (1990), 426–450. MR 1089924

[6] J. Jarušek: **Remark to the generalized gradient method for the optimal large-scale heating problems**. Probl. Control Inform. Theory 16 (1987), 89–99. MR 0907452

[7] P.O. Lindberg: **A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality**. Survey of Math. programming (Proc. 9th Internat. Math. Program. Symp.), A. Prékopa (ed.), Budapest, 1976, pp. 249–267. MR 0580465

[8] J.V. Outrata and J. Jarušek: **Duality theory in mathematical programming and optimal control**. Supplement to Kybernetika 20 (1984) and 21 (1985). MR 0795002

[9] J.L. Lions and E. Magenes: **Problèmes aux limites non-homogènes et applications. Dunod, Paris**. 1968.

[10] J. Nečas and I. Hlaváček: **Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction**. Elsevier Sci. Publ. Co., Amsterdam-Oxford-New York, 1981. MR 0600655

[11] H.-J. Schmeisser and H. Triebel: **Topics in Fourier Analysis and Function Spaces**. Akad. Vg. Geest & Portig, Leipzig, 1987. MR 0900143

[12] W. Sickel: **Superposition of functions in Sobolev spaces of fractional order. A survey**. Partial Differential Equations, Banach Centrum Publ. vol. 27, Polish Acad. Sci., Warszawa, 1992. MR 1205849 | Zbl 0792.47062

[13] A. Visintin: **Sur le problème de Stefan avec flux non-linéaire**. Boll. U.M.I. C-18 (1981), 63–86. MR 0631569 | Zbl 0478.35084