Previous |  Up |  Next

Article

Title: Solution of the Dirichlet problem for the Laplace equation (English)
Author: Medková, Dagmar
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 2
Year: 1999
Pages: 143-168
Summary lang: English
.
Category: math
.
Summary: For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series. (English)
Keyword: Laplace equation
Keyword: Dirichlet problem
Keyword: single layer potential
Keyword: double layer potential
MSC: 31B10
MSC: 35C15
MSC: 35J05
MSC: 35J25
idZBL: Zbl 1060.35041
idMR: MR1667634
DOI: 10.1023/A:1022209421576
.
Date available: 2009-09-22T18:00:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134409
.
Reference: [1] F. Ahner: The exterior Dirichlet problem for the Helmholtz equation.Journal of mathematical analysis and application 52 (1975), 415–429. Zbl 0326.45001, MR 0418658, 10.1016/0022-247X(75)90069-4
Reference: [2] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
Reference: [3] H. Bauer: Harmonische Räume und ihre Potentialtheorie.Springer Verlag, Berlin, 1966. Zbl 0142.38402, MR 0210916
Reference: [4] A. S. Besicovitch: A general form of the covering principle and relative differentiation of additive functions I.Proc. Cambridge Phil. Soc. 41 (1945), 103–110. MR 0012325
Reference: [5] A. S. Besicovitch: A general form of the covering principle and relative differentiation of additive functions II.Proc. Cambridge Phil. Soc. 42 (1946), 1–10. Zbl 0063.00353, MR 0014414
Reference: [6] N. Boboc, C. Constantinescu, A. Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions.Nagoya Math. J. 23 (1963), 73–96. MR 0162957
Reference: [7] Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions.Leningrad, 1969. (Russian Seminars in mathematics V. A. Steklov Mathematical Institute) MR 0240284
Reference: [8] M. Chlebík: Tricomi potentials.Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha, 1988. (Slovak)
Reference: [9] D. Colton, R. Kress: Iterative methods for solving the exterior Dirichlet problem for the Helmholtz equation with applications to the inverse scattering problem for low frequency acoustic waves.Journal of mathematical analysis and applications 77 (1980), 60–72. MR 0591262, 10.1016/0022-247X(80)90261-9
Reference: [10] M. Dont: Non-tangential limits of the double layer potentials.Čas. pěst. mat. 97 (1972), 231–258. Zbl 0237.31012, MR 0444975
Reference: [11] H. Federer: Geometric Measure Theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325
Reference: [12] I. C. Gohberg, M. S. Krein: The basic propositions on defect numbers, root numbers and indices of linear operators.Amer. Math. Soc. Transl. 13 (1960), 185–264. MR 0113146, 10.1090/trans2/013/08
Reference: [13] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19(4) (1986), 60–64. MR 0880678
Reference: [14] N. V. Grachev, V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-06, Linköping Univ., Sweden.
Reference: [15] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
Reference: [16] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
Reference: [17] H. Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021
Reference: [18] J. Köhn, M. Sieveking: Zum Cauchyschen und Dirichletschen Problem.Math. Ann. 177 (1968), 133–142. MR 0227445, 10.1007/BF01350789
Reference: [19] V. Kordula, V. Müller, V. Rakočević: On the semi-Browder spectrum.Studia Math. 123 (1997), 1–13. MR 1438302
Reference: [20] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980. MR 0590244
Reference: [21] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [22] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace matematiky 31 (1986), 239–308. MR 0854323
Reference: [23] R. Kress, G. F. Roach: On the convergence of successive approximations for an integral equation in a Green’s function approach to the Dirichlet problem.Journal of mathematical analysis and applications 55 (1976), 102–111. MR 0411214, 10.1016/0022-247X(76)90280-8
Reference: [24] V. G. Maz’ya: Boundary Integral Equations.Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27, Viniti, Moskva (Russian), 1988.
Reference: [25] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslov. Math. J. 47 (1997), 651–679. MR 1479311, 10.1023/A:1022818618177
Reference: [26] D. Medková: Solution of the Neumann problem for the Laplace equation.Czechoslov. Math. J. 48 (1998), 768–784. MR 1658269, 10.1023/A:1022447908645
Reference: [27] D. Medková: Solution of the Robin problem for the Laplace equation.Appl. of Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214
Reference: [28] M. Miranda: Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito.Ann. Scuola norm. Sup. Pisa Cl. Sci. 18 (1964), 27–56. Zbl 0131.11802, MR 0165073
Reference: [29] D. Mitrea: The method of layer potentials for non-smooth domains with arbitrary topology.Integr. equ. oper. theory 29 (1997), 320–338. Zbl 0915.35032, MR 1477324, 10.1007/BF01320705
Reference: [30] A. P. Morse: Perfect blancets.Trans. Am. Math. Soc. 61 (1947), 418–442. MR 0020618, 10.1090/S0002-9947-1947-0020618-0
Reference: [31] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat. 100 (1975), 374–383. Zbl 0314.31006, MR 0419794
Reference: [32] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslov. Math. J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [33] I. Netuka: The third boundary value problem in potential theory.Czechoslov. Math. J. 2(97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [34] I. Netuka: Smooth surfaces with infinite cyclic variation (Czech).Čas. pěst. mat. 96 (1971), 86–101. MR 0284553
Reference: [35] I. Netuka: Generalized Robin problem in potential theory.Czechoslov. Math. J. 22(97) (1972), 312–324. Zbl 0241.31008, MR 0294673
Reference: [36] I. Netuka: Double layer potential representation of the solution of the Dirichlet problem.Comment. Math. Un. Carolinae 14 (1973), 183–186. Zbl 0255.31009, MR 0316725
Reference: [37] I. Netuka: Double layer potentials and Dirichlet problem.Czechoslov. Math. J. 24(99) (1974), 59–73. MR 0348127
Reference: [38] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method.Applicable Analysis 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093
Reference: [39] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum.Applicable Analysis 56 (1995), 109–115. MR 1378015, 10.1080/00036819508840313
Reference: [40] M. Schechter: Principles of Funtional Analysis.Academic Press, London, 1971. MR 0445263
Reference: [41] H. Watanabe: Double layer potentials for a bounded domain with fractal boundary.in Potential Theory. ICPT 94, ed. J. Král, J. Lukeš, I. Netuka, J. Veselý, Walter de Gruyter, Berlin, New York, 1996, pp. 463–471. Zbl 0854.31001, MR 1404730
Reference: [42] K. Yosida: Functional Analysis.Springer Verlag, 1965. Zbl 0126.11504
Reference: [43] W. P. Ziemer: Weakly Differentiable Functions.Springer Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
AplMat_44-1999-2_3.pdf 473.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo