Article
Keywords:
domain decomposition; multilevel methods; fluid mechanics; Burgers equation
Summary:
This article presents some results of numerical tests of solving the two-dimensional non-linear unsteady viscous Burgers equation. We have compared the known convergence and parallel performance properties of the additive Schwarz domain decomposition method with or without a coarse grid for the model Poisson problem with those obtained by experiments for the Burgers problem.
References:
                        
[angot94:paralmultileveldomaindecommethod] P. Angot: Parallel Multi-Level and Domain Decomposition Methods. Calculateurs Parallèles L.T.C.P. 6(4) (1994).
[kortas96:practicmodelprogram] S. Kortas and P. Angot: A practical and portable model of programming for iterative solvers on distributed memory machines. Parallel Computing 22 (1996), 478–512.
[le94:domaindecommethodcomputmechan] P. Le Tallec: 
Domain Decomposition Methods in Computational Mechanics. Comput. Mech. Adv. (1994). 
MR 1263805 | 
Zbl 0802.73079 
[roache72:computfluiddynam] P. J. Roache: 
Computational Fluid Dynamics. Hermosa Publishers, 1972. 
MR 0411358 | 
Zbl 0251.76002 
[smith96:domaindecom] B. Smith, P. Bjœrstad, and W. Gropp: 
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge Univ. Press, 1996. 
MR 1410757 
[vandervorst92:bicgstab] H. A. Van der Vorst: 
Bi-CGSTAB: A fast and smoothly converging variant of BiCG for the solution of non-symmetric linear systems. SIAM J. Sci. Statist. Comput. 13 (1992), 631–644. 
DOI 10.1137/0913035 | 
MR 1149111