[1] A. Gierer, H. Meinhardt: 
Biological pattern formation involving lateral inhibition. In: Some Mathematical Questions in Biology. VI. Lectures on Mathematics in the Life Sciences, vol 7, 1974, pp. 163–183. 
MR 0452787[2] P. Quittner: 
On the principle of linearized stability for variational inequalities. Math. Ann. 283 (1989), 257–270. 
MR 0980597[3] P. Drábek, M. Kučera: 
Reaction-diffusion systems: Destabilizing effect of unilateral conditions. Nonlinear Analysis, Theory, Methods and Applications 12 (1988), 1172–1192. 
MR 0969497[4] M. Kučera, J. Neustupa: 
Destabilizing effect of unilateral conditions in reaction-diffusion systems. Comment. Math. Univ. Carolinae 27 (1986), 171–187. 
MR 0843429[5] P. Quittner: 
Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. Reine Angew. Math. 380 (1987), 1–13. 
MR 0916198 | 
Zbl 0617.35053[6] M. Bosák, M. Kučera: Bifurcation for quasivariational inequalities of reaction-diffusion type. Stability and Appl. Anal. of Cont. Media 3 (1993), 111–127.
[7] M. Kučera: 
Reaction-diffusion systems: Bifurcation and stabilizing effect of conditions given by inclusions. Nonlinear Analysis, Theory, Methods and Applications 27 (1996), 249–260. 
DOI 10.1016/0362-546X(95)00055-Z | 
MR 1391435[8] M. Kučera: 
Bifurcation of solutions to reaction-diffusion systems with unilateral conditions. In: Navier-Stokes Equations and Related Nonlinear Problems, A. Sequeira (ed.), Plenum Press, New York, 1995, pp. 307–322. 
MR 1373224[9] J. Eisner, M. Kučera: 
Spatial patterns for reaction-diffusion systems with conditions described by inclusions. Appl. Math. 42 (1997), 421–449. 
DOI 10.1023/A:1022203129542 | 
MR 1475051[10] J. Eisner, M. Kučera: 
Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. (to appear). 
MR 1759546[11] J. L. Lions, E. Magenes: 
Problèmes aux Limites non Homogènes et Applications. Dunod, Paris, 1970. 
MR 0291887[12] G. Duvaut, J. L. Lions: 
Les Inéquations en Mécanique et en Physique. Dunod, Paris, 1972. 
MR 0464857[13] E. H. Zarantonello: 
Projections on convex sets in Hilbert space and spectral theory. In: Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 237–424. 
MR 0388177 | 
Zbl 0281.47043[14] M. Mimura, Y. Nishiura and M. Yamaguti: 
Some diffusive prey and predator systems and their bifurcation problems. Ann. N. Y. Acad. Sci. 316 (1979), 490–521. 
MR 0556853[16] P. Quittner: 
Solvability and multiplicity results for variational inequalities. Comment. Math. Univ. Carolinae 30 (1989), 281–302. 
MR 1014128 | 
Zbl 0698.49004