[1] V. V. Alekhin, B. D. Annin and S. N. Korobeinikov: Accounting of a friction in contact elastoplastic problems. In: Fund. Prob. Mat. Mekh. 2, Novosibirsk Univ., 1996. (Russian)
[2] C. Baiocchi, A. Capelo: 
Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, Chichester, 1984. 
MR 0745619[3] G. P. Cherepanov: On some mechanism of the development of cracks in the Earth solid shell. Izvestiya USSR Acad. Sci., Physics of the Earth 9 (1984), 3–12. (Russian)
[4] R. Duduchava, W. Wendland: 
The Wiener-Hopf method for system of pseudodifferential equations with applications to crack problems. Integral Equations Operator Theory 23 (1995), 294–335. 
DOI 10.1007/BF01198487 | 
MR 1356337[5] G. Duvaut, J.-L. Lions: 
Les Inéquations en Mécanique et en Physique. Dunod, Paris, 1972. 
MR 0464857[7] P. Grisvard: 
Singularities in Boundary Value Problems. Masson, Paris & Springer-Verlag, Berlin, 1992. 
MR 1173209 | 
Zbl 0778.93007[8] I. Hlaváček, J. Haslinger, J. Nečas and J.  Lovíšek: 
Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988. 
MR 0952855[9] J. Jarušek: 
Contact problems with bounded friction, coercive case. Czechoslovak Math. J. 33 (108) (1983), 237–261. 
MR 0699024[10] A. M. Khludnev, J. Sokolowski: 
Modelling and Control in Solid Mechanics. Birkhäuser, Basel-Boston-Berlin, 1997. 
MR 1433133[11] V. A. Kovtunenko: 
Analytical solution of a variational inequality for a cutted bar. Control Cybernet. 25 (1996), 801–808. 
MR 1420072 | 
Zbl 0863.73077[12] V. A. Kovtunenko: 
Iterative penalty method for plate with a crack. Adv. Math. Sci. Appl. 7 (1997), 667–674. 
MR 1476271 | 
Zbl 0896.73079[13] V. A. Kovtunenko: 
A variational and a boundary problems with friction on the interior boundary. Siberian Math. J. 39 (1998), 1060–1073. 
MR 1650748[14] A. S. Kravchuk: Variational and Quasivariational Inequalities in Mechanics. MGAPI, Moscow, 1997. (Russian)
[15] J.-L. Lions, E. Magenes: Problémes aux Limites non Homogénes et Applications 1. Dunod, Paris, 1968.
[16] V. G. Maz’ya: 
Spaces of S. L. Sobolev. Leningrad Univ., 1985. (Russian) 
MR 0807364[17] N. F. Morozov: 
Mathematical Foundations of the Crack Theory. Nauka, Moscow, 1984. (Russian) 
MR 0787610[18] S. A. Nazarov, B. A. Plamenevskiĭ: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Nauka, Moscow, 1991. (Russian)
[19] J. Nečas, J. Jarušek and J. Haslinger: 
On the solution of the variational inequality to the Signorini problem with small friction. Boll. Um. Mat. Ital. 17-B (1980), 796–811. 
MR 0580559[20] J. J. Telega, T. Lewinski: 
Mathematical aspects of modelling the macroscopic behaviour of cross-ply laminates with intralaminar cracks. Control Cybernet. 23 (1994), 773–792. 
MR 1303383[21] E. Zeidler: 
Nonlinear Functional Analysis and its Applications. 1. Fixed-Point Theorems. Springer-Verlag, New York, 1986. 
MR 0816732