| Title: | An alternative proof of Painlevé's theorem (English) | 
| Author: | Němec, Jan | 
| Language: | English | 
| Journal: | Applications of Mathematics | 
| ISSN: | 0862-7940 (print) | 
| ISSN: | 1572-9109 (online) | 
| Volume: | 45 | 
| Issue: | 4 | 
| Year: | 2000 | 
| Pages: | 291-299 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this article we show some aspects of analytical and numerical solution of the $n$-body problem, which arises from the classical Newtonian model for gravitation attraction. We prove the non-existence of stationary solutions and give an alternative proof for Painlevé’s theorem. (English) | 
| Keyword: | $n$-body problem | 
| Keyword: | ordinary differential equations | 
| Keyword: | Painlevé’s theorem | 
| MSC: | 70F10 | 
| MSC: | 70F16 | 
| idZBL: | Zbl 1058.70015 | 
| idMR: | MR1763173 | 
| DOI: | 10.1023/A:1022371412511 | 
| . | 
| Date available: | 2009-09-22T18:03:59Z | 
| Last updated: | 2020-07-02 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134440 | 
| . | 
| Reference: | [1] P. Andrle: Foundation of Celestial Mechanics.Academia, Praha, 1971. (Czech) | 
| Reference: | [2] P. Andrle: Celestial Mechanics.Academia, Praha, 1987. (Czech) | 
| Reference: | [3] J. Kofroň: Ordinary Differential Equations in Real Space.Univerzita Karlova, Praha, 1990. (Czech) | 
| Reference: | [4] M. Křížek: On the three-body problem.Rozhledy mat.-fyz. 70 (1992), 105–112. (Czech) | 
| Reference: | [5] M. Křížek: Numerical experience with the three-body problem.Comput. Appl. Math. 63 (1995), 403–409. MR 1365579, 10.1016/0377-0427(95)00067-4 | 
| Reference: | [6] M. Křížek: Numerical experience with the finite speed of gravitational influence.Math. Comput. Simulation 50 (1999), 237–245. MR 1717610, 10.1016/S0378-4754(99)00085-3 | 
| Reference: | [7] J. Kurzweil: Ordinary Differential Equations.Elsevier, Amsterdam, 1986. Zbl 0667.34002, MR 0929466 | 
| Reference: | [8] Ch. Marchal: The Three Body Problem.Elsevier, Amsterdam, 1990. Zbl 0719.70006, MR 1124619 | 
| Reference: | [9] A. Marciniak: Numerical Solution of the $N$-Body Problem.Reidel Publishing Company, Dordrecht, 1985. MR 0808778 | 
| Reference: | [10] P. Painlevé: Leçons sur la Théorie Analytic des Equations Différentielles.Hermann, Paris, 1897. | 
| Reference: | [11] D. G. Saari, Z. Xia: Off to infinity in finite time.Notices Amer. Math. Soc. 42 (1995), 538–546. MR 1324734 | 
| . |