Article
Keywords:
unilateral contact; Coulomb friction; finite elements; existence proofs
Summary:
A unilateral contact problem with a variable coefficient of friction is solved by a simplest variant of the finite element technique. The coefficient of friction may depend on the magnitude of the tangential displacement. The existence of an approximate solution and some a priori estimates are proved.
References:
                        
[1] P. G. Ciarlet: 
Basic Error Estimates for Elliptic Problems. In: Handbook of Numerical Analysis, vol. II, P. G. Ciarlet, J. L. Lions (eds.), North-Holland, Amsterdam, 1991. 
MR 1115237 | 
Zbl 0875.65086 
[2] Ch. Eck: 
Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. Dissertation Thesis. Univ. Stuttgart, 1996. 
MR 1466960 
[4] J. Franců: 
Monotone operators. A survey directed to applications to differential equations. Appl. Math. 35 (1990), 257–301. 
MR 1065003 
[5] J. Haslinger: 
Least square method for solving contact problems with friction obeying the Coulomb law. Appl. Math. 29 (1984), 212–224. 
MR 0747213 | 
Zbl 0557.73100 
[7] C. Licht, E. Pratt and M. Raous: 
Remarks on a numerical method for unilateral contact including friction. In: Unilateral Problems in Structural Analysis, Birkhäuser, Basel, 1991, pp. 129–144. 
MR 1169548