[1] T.  Apel, M.  Dobrowolski: 
Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277–293. 
DOI 10.1007/BF02320197 | 
MR 1155498 
[2] I.  Babuška, A. K.  Aziz: 
On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226. 
DOI 10.1137/0713021 | 
MR 0455462 
[3] R. E.  Barnhill, J. A.  Gregory: 
Sard kernel theorems on triangular domains with applications to finite element error bounds. Numer. Math. 25 (1976), 215–229. 
DOI 10.1007/BF01399411 | 
MR 0458000 
[5] J. A.  Gregory: 
Error bounds for linear interpolation on triangles. In: Proc. MAFELAP II, J. R. Whiteman (ed.), Academic Press, London, 1976, pp. 163–170. 
MR 0458795 
[6] P.  Jamet: 
Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43–61. 
MR 0455282 
[7] M.  Křížek: 
On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232. 
MR 1109126 
[8] M.  Křížek: 
On the maximum angle condition for linear tetrahedral elements. SIAM J.  Numer. Anal. 29 (1992), 513–520. 
DOI 10.1137/0729031 | 
MR 1154279 
[10] J. L.  Synge: 
The Hypercircle in Mathematical Physics. Cambridge Univ. Press, London, 1957. 
MR 0097605 | 
Zbl 0079.13802 
[11] A.  Ženíšek: 
Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. 
MR 1086876 
[12] A.  Ženíšek: 
Maximum-angle condition and triangular finite elements of Hermite type. Math. Comp. 64 (1995), 929–941. 
DOI 10.2307/2153477 | 
MR 1297481