Previous |  Up |  Next


elastic plates; Kármán equations; uncertain initial deflections; worst scenario
The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.
[1] Y. Ben-Haim, I. E. Elishakoff: Convex Models of Uncertainties in Applied Mechanics. Studies in Appl. Mech. 25. Elsevier, Amsterdam, 1990.
[2] V. M. Broude: Limit States of Steel Beams. Nauka, Moskva, 1953. (Russian Russian)
[3] I. E. Elishakoff, G. Q. Cai and J. H. Starnes, Jr.: Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. Int. J. Non-Linear Mechanics 29 (1994), 71–82. DOI 10.1016/0020-7462(94)90053-1
[4] I. Hlaváček: Einfluss der Form der Anfangskrümmung auf das Ausbeulen der gedrückten rechteckigen Platte. Acta Technica ČSAV (1962), 174–206. (German)
[5] I. Hlaváček: Reliable solution of elliptic boundary value problems with respect to uncertain data. Proc. 2nd WCNA, Nonlin. Anal., Theory, Meth. & Appls. 30 (1997), 3879–3890. MR 1602891
[6] W. J. Supple: Changes of wave-form of plates in the post-buckling range. Int.  J.  Solids Structures 6 (1970), 1243–1258. DOI 10.1016/0020-7683(70)90100-9
[7] S. P. Timoshenko, J. M. Gere: Theory of Elastic Stability. 2nd edn., McGraw Hill, Burr Ridge, 1961. MR 0134026
[8] A. S. Volmir: Stability of Deformable Systems. Nauka, Moskva, 1967, 2nd edn. (Russian)
Partner of
EuDML logo