Article
Keywords:
bifurcation points; imperfect bifurcation diagrams; qualitative analysis
Summary:
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism $\Phi $ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential $D\Phi (0)$ of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of $D\Phi (0)$. Singularity classes containing bifurcation points with $\mathop {\mathrm codim}\le 3$, $\mathop {\mathrm corank}=1$ are considered.
References:
                        
[1] K. Böhmer: 
On a numerical Lyapunov-Schmidt method for operator equations. Computing 53 (1993), 237–269. 
MR 1253405[2] K.  Böhmer, D.  Janovská and V.  Janovský: 
Computer aided analysis of the imperfect bifurcation diagrams. East-West J. Numer. Math.  (1998), 207–222. 
MR 1652813[4] S. N. Chow, J.  Hale: 
Methods of Bifurcation Theory. Springer Verlag, New York, 1982. 
MR 0660633[6] M. Golubitsky, D.  Schaeffer: 
Singularities and Groups in Bifurcation Theory, Vol. 1. Springer Verlag, New York, 1985. 
MR 0771477[7] W. Govaerts: 
Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia, 2000. 
MR 1736704 | 
Zbl 0935.37054[8] V. Janovský, P.  Plecháč: 
Computer aided analysis of imperfect bifurcation diagrams I. Simple bifurcation point and isola formation centre. SIAM J.  Num. Anal. 21 (1992), 498-512. 
MR 1154278