| Title: | Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates (English) | 
| Author: | Slodička, Marián | 
| Language: | English | 
| Journal: | Applications of Mathematics | 
| ISSN: | 0862-7940 (print) | 
| ISSN: | 1572-9109 (online) | 
| Volume: | 48 | 
| Issue: | 1 | 
| Year: | 2003 | 
| Pages: | 49-66 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper, we consider a 2nd order semilinear parabolic initial boundary value problem (IBVP) on a bounded domain $\Omega \subset \mathbb{R}^N$, with nonstandard boundary conditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC containing an unknown additive space-constant $\alpha (t)$, accompanied with a nonlocal (integral) Dirichlet side condition. We design a numerical scheme for the approximation of a weak solution to the IBVP and derive error estimates for the approximation of the solution  $u$ and also of the unknown function  $\alpha $. (English) | 
| Keyword: | nonlocal boundary condition | 
| Keyword: | parameter identification | 
| Keyword: | parabolic IBVP | 
| MSC: | 35B30 | 
| MSC: | 35K20 | 
| MSC: | 35K55 | 
| MSC: | 65M15 | 
| MSC: | 65M32 | 
| idZBL: | Zbl 1099.65081 | 
| idMR: | MR1954503 | 
| DOI: | 10.1023/A:1022954920827 | 
| . | 
| Date available: | 2009-09-22T18:12:13Z | 
| Last updated: | 2020-07-02 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134516 | 
| . | 
| Reference: | [1] D. Andreucci, R. Gianni: Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions.Adv. Differential Equations 1 (1996), 729–752. MR 1392003 | 
| Reference: | [2] D. N.  Arnold, F. Brezzi: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates.RAIRO Modél. Math. Anal. Numér. 19 (1985), 7–32. MR 0813687, 10.1051/m2an/1985190100071 | 
| Reference: | [3] J. H.  Bramble, P. Lee: On variational formulations for the Stokes equations with nonstandard boundary conditions.RAIRO Modél. Math. Anal. Numér. 28 (1994), 903–919. MR 1309419, 10.1051/m2an/1994280709031 | 
| Reference: | [4] H. De Schepper, M. Slodička: Recovery of the boundary data for a linear second order elliptic problem with a nonlocal boundary condition.ANZIAM Journal (C) 42 (2000), 518–535. MR 1810647, 10.21914/anziamj.v42i0.611 | 
| Reference: | [5] A. Friedman: Partial Differential Equations.Robert E.  Krieger Publishing Company, Hungtinton, New York, 1976. MR 0454266 | 
| Reference: | [6] A. Friedman: Variational Principles and Free-Boundary Problems.Wiley, New York, 1982. Zbl 0564.49002, MR 0679313 | 
| Reference: | [7] J. Kačur: Method of Rothe in Evolution Equations. Teubner Texte zur Mathematik Vol. 80.Teubner, Leipzig, 1985. MR 0834176 | 
| Reference: | [8] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584 | 
| Reference: | [9] C. V.  Pao: Nonlinear Parabolic and Elliptic Equations.Plenum Press, New York, 1992. Zbl 0777.35001, MR 1212084 | 
| Reference: | [10] J. Heywood, R. Rannacher and S. Turek: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations.Internat. J. Numer. Methods Fluids 22 (1996), 325–352. MR 1380844, 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y | 
| Reference: | [11] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations.Reidel Publishing Company, Dordrecht-Boston-London, 1982. Zbl 0522.65059, MR 0689712 | 
| Reference: | [12] M. Slodička: A monotone linear approximation of a nonlinear elliptic problem with a non-standard boundary condition.In: Algoritmy 2000, A. Handlovičová, M. Komorníková, K. Mikula and D. Ševčovič (eds.), Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Bratislava, 2000, pp. 47–57. | 
| Reference: | [13] M. Slodička: Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition.RAIRO Modél. Math. Anal. Numér. 35 (2001), 691–711. Zbl 0997.65124, MR 1862875, 10.1051/m2an:2001132 | 
| Reference: | [14] M. Slodička and H. De Schepper: On an inverse problem of pressure recovery arising from soil venting facilities.Appl. Math. Comput. 129 (2002), 469–480. MR 1905411, 10.1016/S0096-3003(01)00057-1 | 
| Reference: | [15] R. Van  Keer, L. Dupré and J. Melkebeek: Computational methods for the evaluation of the electromagnetic losses in electrical machinery.Arch. Comput. Methods Engrg. 5 (1999), 385–443. MR 1675223, 10.1007/BF02905911 | 
| Reference: | [16] R. Van Keer, M. Slodička: Numerical modelling for the recovery of an unknown flux in semilinear parabolic problems with nonstandard boundary conditions.In: Proceedings European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, E. Onate, G. Bugeda and B. Suárez (eds.), Barcelona, 2000. | 
| Reference: | [17] R. Van Keer, M. Slodička: Numerical techniques for the recovery of an unknown Dirichlet data function in semilinear parabolic problems with nonstandard boundary conditions.In: Numerical Analysis and Its Applications, L. Vulkov, J. Wasniewski and P. Yalamov (eds.), Springer, 2001, pp. 467–474. MR 1938440 | 
| . |